• Title/Summary/Keyword: amplitude coefficient

Search Result 365, Processing Time 0.027 seconds

An Experimental Study of Vibrator Amplitude Change for a Clamping Force Dispersion and Friction Coefficient Decrease (체결력 산포와 마찰계수의 감소를 위한 가진기의 진동량 변화 실험)

  • Lee, Geum-Gang;Moon, Seok-Man;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.332-337
    • /
    • 2011
  • The object of this experimental study is to investigate influences of vibrator amplitude on clamping force in vibration for bolted joint. The experiment is that change the vibrator amplitude to check clamping force. also the friction coefficient calculated by equation to use an obtained in experiments. The main purpose of generation vibrations is decreasing the clamping force dispersion. also If vibration occurs while tightening the bolt is reduced coefficient of friction. In this paper, In experiments to measure the clamping force before vibrator's amplitude changing. Vibrator's amplitude changes to 5.5mm from 4.4mm. As a result, under various vibration condition, relationship of clamping force and Vibrator amplitude.

The Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

Fatigue Life Prediction for High Strength AI-alloy under Variable Amplitude Loading (변동하중하에서 고강도 알루미늄 합금의 피로수명 예측)

  • Sim, Dong-Seok;Kim, Gang-Beom;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2074-2082
    • /
    • 2000
  • In this study, to investigate and to predict the crack growth behavior under variable amplitude loading, crack growth tests are conducted on 7075-T6 aluminum alloy. The loading wave forms are generated by normal random number generator. All wave forms have same average and RMS(root mean square) value, but different standard deviation, which is to vary the maximum load in each wave. The modified Forman's equation is used as crack growth equation. Using the retardation coefficient D defined in previous study, the load interaction effect is considered. The variability in crack growth process is described by the random variable Z which was obtained from crack growth tests under constant amplitude loading in previous work. From these, a statistical model is developed. The curves predicted by the proposed model well describe the crack growth behavior under variable amplitude loading and agree with experimental data. In addition, this model well predicts the variability in crack growth process under variable amplitude loading.

An Analysis of Phonetic Parameters for Individual Speakers (개별화자 음성의 특징 파라미터 분석)

  • Ko, Do-Heung
    • Speech Sciences
    • /
    • v.7 no.2
    • /
    • pp.177-189
    • /
    • 2000
  • This paper investigates how individual speakers' speech can be distinguished using acoustic parameters such as amplitude, pitch, and formant frequencies. Word samples from fifteen male speakers in their 20's in three different regions were recorded in two different modes (i.e., casual and clear speech) in quiet settings, and were analyzed with a Praat macro scrip. In order to determine individual speakers' acoustical values, the total duration of voicing segments was measured in five different timepoints. Results showed that a high correlation coefficient between $F_1\;and\;F_2$ in formant frequency was found among the speakers although there was little correlation coefficient between amplitude and pitch. Statistical grouping shows that individual speakers' voices were not reflected in regional dialects for both casual and clear speech. In addition, the difference of maximum and minimum in amplitude was about 10 dB which indicates a perceptually audible degree. These acoustic data can give some meaningful guidelines for implementing algorithms of speaker identification and speaker verification.

  • PDF

Effect of Vibrational Amplitude on Friction and Wear Properties of Magnetorheological Elastomer (진폭에 따른 자기유변탄성체의 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.39-43
    • /
    • 2016
  • Magnetorheological elastomers (MREs) are a type of “smart” material, and their properties can be controlled rapidly and reversibly under the influence of an external stimulus. The application of an external magnetic field can change the shear modulus, hardness, and friction coefficient of MREs. The friction can cause vibration; moreover, the vibration can affect friction. The change of friction depends on the relative motion, normal force, roughness of the rubbing surfaces, material type, temperature, lubrication, relative humidity, and vibration condition. As MREs are a type of “smart material,” their friction coefficient can be reduced by applying an external magnetic field—the applications of this feature in engineering have been widely studied. However, the friction properties of MREs under vibration have not been tested to date. In this study, MRE samples and a reciprocating friction tester were fabricated. The friction coefficient was measured to evaluate the friction properties under various vibration conditions; subsequently, the wear depth and wear surface profile of the MRE were observed in order to evaluate the wear properties. The results show that the friction coefficient of the MREs decreased when a magnetic field was applied. Moreover, the friction coefficient decreased when the vibrational amplitudes increased. The wear depth of the MRE also decreased as the vibrational amplitudes increased.

Televiewer Rock Strength as an Approach to Estimate the Strength of in situ Rocks (텔레뷰어 암석강도 산출 및 그의 응용성)

  • 김중열;김유성;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.237-244
    • /
    • 2002
  • Televiewer is a logging tool capable of scanning the borehole wall. The tool uses a rotating acoustic beam generator that acts as both a transmitter and receiver. The beams are sent toward the wall. The amplitude of a returning signal from the wall has nearly a linear relationship with the reflection coefficient R of the borehole wall, when the wall is smooth. As R depends only on rock impedance for fixed water impedance, the amplitude is directly associated with mass density and seismic velocity of rock. Meanwhile, the amplitude can be further reduced by wall roughness that may be caused by drilling procedures, differences in rock hardness, because the rough surface can easily scatter the acoustic energy and sometimes the hole becomes elongated in all directions according to the degree of weathering. In this sense, the amplitude is related to the hardness of rocks. For convenience of analysis, the measured amplitude image(2-D data(azimuth ${\times}$ depth)) is converted, with an appropriate algorithm, to the 1-D data(depth), where the amplitude image values along a predetermined fracture signature(sinusoid) are summed up and averaged. The resulting values are subsequently scaled simply by a scalar factor that is possibly consistent with a known strength. This scaled Televiewer reflectivity is named, as a matter of convenience,“Televiewer rock strength”. This paper shows, based on abundant representative case studies from about 8 years of Televiewer surveys, that Televiewer rock strength might be regarded, on a continuous basis with depth, as a quitely robust indicator of rock classification and in most cases as an approximate uniaxial strength that is comparable to the rebound value from Schmidt hammer test.

  • PDF

Sound Absorption Characteristics of Finite-Amplitude Acoustic Waves in Poroelastic Materials (탄성다공성 재질에서 유한진폭 입사음파의 흡음 특성)

  • Lee, Soo-Il;Kim, Jin-Seop;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.591-595
    • /
    • 2000
  • Sound absorbing characteristics of poroelastic materials is known to be greatly affected by high intensity acoustic waves. However, this effect has not been considered yet. In this study, the extended semilinear model based on Biot's theory for the porous materials and the characteristics of nonlinear waves in poroelastic sound absorbing materials were introduced. The expressions for the finite-amplitude acoustic plane waves were presented. By combining each nonlinear wave with appropriate matching conditions, we could investigate the effects of finite-amplitude acoustic waves on absorption characteristics of poroelastic materials. In the most ideal case considered in this paper, the absorption coefficient was found to become larger than that of linear incident waves. It was shown that the absorption coefficient became greater especially as frequency goes higher and as distance from the source goes larger. These phenomena may be inferred to result from 'dissipation effects due to nonlinearity'. This finding may have important implications for high intensity noise control.

  • PDF

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long;Ye, Qin;Shao, Li
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2021
  • The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.

Characteristics of Pressure-Drop Oscillations in a Boiling Channel (비등유로의 압력강하 요동특성)

  • Kim, B.J.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • Characteristics of pressure-drop oscillations(PDO) in a boiling channel were studied numerically and compared with experimental data. Effects of initial and boundary conditions on PDO were investigated in terms of oscillation period and amplitude. The period and amplitude of PDO increased with increasing of the compressible volume in the surge tank and the heat input. PDO occurred within the specific range of the fluid temperature, at which oscillation period and amplitude diminished rapidly with the increase of the fluid temperature. The increase of the loss coefficient in fluid supply line resulted in slightly longer oscillation period and larger amplitude. Numerical results showed good agreement with the experimental data.

  • PDF