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The Variable Amplitude Coefficient Fireworks 
Algorithm with Uniform Local Search Operator
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ABSTRACT

Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient 

local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with 

Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed 

dynamically . Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude 

Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results 

indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm 

Optimization.

☞ keyword : Fireworks Algorithm; Variable Amplitude Coefficiency; Uniform Local Search; Global Optimization

1. Introduction 

The fireworks algorithm (FWA) is a novel swarm-based 

metaheuristic intelligence algorithm [1]. Inspired by the 

natural phenomenon of fireworks explosion, Tan and Zhu [1] 

proposed the FWA in 2010. Fireworks are regarded as a 

feasible solution in the solution space of the optimization 

problem in the FWA, and the process of producing a certain 

amount of sparks can be treatd as the searching neighbor area 

around fireworks. The FWA has the local search capability 

and global search capability for keeping diversity of sparks 

[1]. It is more effective than other swarm intelligent 

optimization algorithm in finding optimal global values, such 

as differential evolution (DE) and particle swarm optimization 

(PSO) algorithm [2, 3]. The FWA has been applied to various 

practical problems, such as spam detection [4], 

image-recognition [5], and distribution network reconstruction 

and optimization [6].
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Recently, many researchers have studied in-depth and 

made various improvements to the FWA. There are two 

categories: one is the operator analysis and improvement; 

another is the study of the mixed algorithm with other 

heuristic algorithms. 

2. Fireworks Algorithm

FWA has the capability of balancing exploration and 

exploitation. Superior fireworks with better fitness have a 

larger quantity of explosive sparks and smaller explosion 

amplitude than inferior fireworks with worse fitness [10]. 

Suppose that the dimension is dm and the quantity of 

fireworks is N, explosion spark quantity sn (Eq.2) of each 

fireworks xi, and the explosion amplitude AE (Eq.4) is 

calculated. The calculation manner is as follows.

2.1 The Main Principal of the Standard 

FWA

2.1.1 Quantity of Sparks 

Assume that the FWA was designed for routine 

optimization problems:

( ) min maxMinimize f x x x x∈Ω ≤ ≤    (1)
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x = x1,x2,…,xn represents a position in the potential space 

of sparks, f(x) is an objective function, xmax and xmin represent 

the upper and the lower boundary of the potential space of 

sparks [1,11].

Eq.2 defines the quantity of sparks generated by each 

firework xi. sm is a parameter used to adjust the number of 

sparks, which are generated by the N fireworks. ymax is the 

maximum fitness(worst) in the current fireworks population,

δ  is employed to avoid zero-division-error, in addition, it is 

the smallest constant [7].

( )
( )( )

max

max1

y f xi
sn smi n y f xii

δ
δ

− +
= ∗

− + =       (2)

In order to control the quality of fireworks, Eq.3 is subject 

to the quantity of sparks. a and b are immutable parameters.

( )
( )

i

i

       if  sn

ˆ       if  sn , 1>
( )

round a sm a sm

sn round b sm b sm a bi
round sn otherwisei

 ∗ < ∗


= ∗ ∗ < <

 (3)

2.1.2 Explosion Amplitude

Superiors firework generates more sparks on a smaller 

region and the amplitude of which is smaller than inferior 

fireworks. Eq.5 defines the explosion amplitude of each 

firework [1]. AC is a parameter, which is used to adjust the 

explosion amplitude. ymin is minimum fitness(the best 

firework) in the current fireworks population.

( )
( )( )

f x i m in
AC

f x i m in1

y
AEi n yi

δ
δ

− +
= ∗

− + =
  

    (4)

2.1.3 Generating Explosion Sparks 

In the FWA, sparks may be affected by the random z 

dimensions in the explosion, and we get the quantity of 

affected directions randomly, as shown in Eq.5 [1]. Rand (0, 

1) is the normal distribution at the location xi, and dm is the 

dimension.

( )( )* 0,1z round dm rand=            (5)

Simulate the explosion process of the fireworks, initialize 

the location of the spark: ˆ jx = ix . Randomly select z 

dimensions of ˆ jx , in the set of pre-selected, if the obtained 

location is found to fall out of the potential space, Eq.6 is 

used to calculate the potential space of each dimension ˆ j
kx . 

ˆ j
kx  is mapped to the potential space with Eq.7.

ˆ ˆ ( 1,1)
j

x
k

j
x AE randk i= + ∗ −          (6)

( )min min maxmax minˆ ˆ ˆ ˆ% ,
j j jjx x x x x x x or x xk k kk k k k k k

= + − < >    (7)

2.1.4 Generating Gaussian Sparks 

To keep the diversity of fireworks, Gaussian explosion is 

introduced [7]. The location of spark ˆ jx  is first generated: ˆ jx

= ix . Then Eq.5 selects z dimensions of ˆ jx randomly. Eq.8 

is used to calculate each dimension ˆ j
kx . If the location is 

found to fall out of the potential space, ˆ j
kx is mapped to the 

potential space by using Eq.7. Gaussian (-1,1) is a Gaussian 

distribution with mean 1 and standard deviations 1.

ˆ ˆ ( 1,1)
j j

x x AE Gaussiank k i= + ∗ −        (8)

2.1.5 Selection Strategy 

In the selection strategy, the best location x* corresponding 

to the current optimal function f(x*), which is always selected 

for the next-generation. To keep the diversity of sparks, the 

next (n – 1) individuals are selected based on their distance 

to other sparks locations. Eq.9 defines the general distance 

between an individual xi and other individuals [10].

( ) ( ),R x d x x x xi i j i j
j k j k
 = = −
∈ ∈          (9)

k denotes the set，which contains both sparks and 

fireworks in current locations. Eq.10 defines the selection 

probability of a location xi. Manhattan distance [17] is 

utilized to measure distance in the FWA. |f(xi) - f(xj)| defines 

d(xi,xj), the selection probability is high in low crowed 

regions, which is same as the definition of the immune 

density-based probability [12].

( ) ( )
( )

R xi
p xi

R x jj k
=
 ∈            (10)
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2.2 Framework of FWA

Algorithm 1 summarizes the framework of FWA. In the 

process of each explosion, two types of sparks are produced: 

explosion sparks and Gaussian sparks. For the first type, the 

quantity of sparks and the amplitude of the explosion depend 

upon the quality of the relevant fireworks f(xi). 

By comparison, the second type is generated by the 

Gaussian explosion strategy, which carries out searching in the 

local Gaussian distribution around the firework. After the FWA 

gets access to the locations of these two types of sparks and 

selects n positions for the next generation in the explosion.

Algorithm 1. Framework of FWA
1: Initialize the basic parameters of the algorithm
2: Randomly select n fireworks in the potential space
3: Evalute their fitness
4:   Repeat
5:      Calculate the number of sparks  that each firework 

generates
6:       Calculate the exploding scope of sparks that each 

firework generates
7:    Generate the sparks, based on the number of  

sparks and scope of explosion
8:     Generate Gaussian sparks
9:     Combine fireworks, Explosion sparks, and 

Gaussian sparks to form a population
10:    Evaluate the fitness of each individual
11:     Select the next generation fireworks n
12:   Until termination criteria is met
13: Return the best individual and its fitness

3. The Proposed VACUFWA

3.1 Uniform Local Search

Peng [13] proposes the ULS operator based on uniform 

design, and use it to enhance the local search capability of 

the DE algorithm. Experimental results prove the excellent 

local search performance of the ULS. The uniform design 

experiment is arranged by a uniform design table. The 

uniform design table is a table with n rows and k columns, 

and the times of experiments are equal to the number of 

levels, namely n=q.Un(q
k) is used to represent the uniform 

design table. Where U denotes the uniform design, n denotes 

the number of experiments, q denotes the number of levels 

of each factor, and k denotes the maximum number of 

independent factors [14].

In the literature [18], the U7(7
6
) is  used, as shown in Table 

1, the process of forming a uniform design table can 

reference to the literature [15]. The uniform design allows 

each factor to have the largest number of levels. Therefore, 

the number of levels is equal to the number of experimental 

studies [13]. Considering the following two aspects of the 

U7(7
6). Firstly, all the number of the last line in Table 1 are 

7, so this represents that the last line is redundant information 

of individuals. Secondly, after several verification tests, U6(6
6) 

is the most appropriate. Therefore, the last row of the U7(7
6) 

is removed to form the uniform design table. Each factor of 

the U6(6
6)  has 6 levels that can obtain effective information 

from the experiment [18].

In two-dimensional space as shown in Figure 1, the ULS 

is used to select two individuals A and B randomly in 

population P and perform a set of experiments, Its search 

space is a two- dimensional space composed of A and B. 

Each dimension of the search space is decomposed evenly 

into six parts representing six levels. The six trial individuals 

are generated in the search space which is formed by A and 

B. Assuming that C is optimal in the six experimental 

individuals, then the first dimension of C is level 1, and the 

second dimension is level 2.

As a general local search framework, the ULS can be 

applied to other evolutionary algorithms to improve search 

capability. The ULS operator is shown in Algorithm 2.

(Table 1) Uniform design table U7(7
6
)

Experiment
number

Factors

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

7 7 7 7 7 7 7
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(Figure 1) Illustration of the uniform local search 

with two randomly chosen individuals 

Algorithm 2. ULS operator 
1: Input: population P, fitness   function evaluation  

 times evaTime
2: Two individuals, xi,G and xj,G, are randomly  

 selected from population P
3: Based on U6(6

6), six experimental individuals(y1  
  ...y6) are constructed between individual xi,G 

   and xj,G

4: Evaluate the target function value f(y1)...f(y6)
5: Choose the optimal individual x* from y1...y6

6:    If (f(xi,G)>f(x*))
7:      xi,G=x*
8:    End if
9: evaTime = evaTime +6
10: Update population P, return evaTime
13: Return the best individual and its fitness

3.1 The uniform local search operator and 

variable amplitude coefficiency are 

fused

The ULS operator conducts a local search in the selected 

next-generation fireworks. Although the ULS is an effective 

method to improve the exploitation capability, it is a 

relatively greedy mechanism. The more times it is executed, 

the higher probability of falling into local extreme value. 

Therefore, the convergence rate and population diversity must 

be balanced, and ULS is executed once for each generation 

of the population.

In the FWA, the value of the explosion amplitude 

coefficiency is fixed, which may not correspond to a real 

process of a fireworks explosion. Generally, a larger value of 

explosion amplitude is suitable for exploring new search 

space, while a smaller value of explosion amplitude is 

suitable for a local search. Therefore, the explosion amplitude 

has a significant influence on global exploration and 

convergence of the algorithm. The variable amplitude 

coefficiency (VAC) decreases the explosion amplitude as the 

number of evaluations increases. The formula of VAC in 

VACUFWA is as follows:

VAC(evaTime) 40 / (1 exp(0.015*(evaTime-maxEva) / 3))(11)= +

Where evaTime is the current number of iterations, and 

maxEva is the maximum number of iterations.

Using excellent local search performance of the ULS 

operators to improve the quality of the FWA, the 

VACUFWA enhances local search capability and achieves the 

balance of convergence speed and global exploration. The 

framework of the VACUFWA isas follows Algorithm 3.

Algorithm 3. Framework of VACUFWA
1:  Initialize the basic parameters of the algorithm
2:  Randomly select n fireworks in the potential 
space
3:  Evalute their fitness
4:    Repeat
5: Calculate the number of sparks  that each 

firework generates
6: Calculate the exploding scope of sparks  

that each firework generates
7: Generate the sparks, based on the number 

of sparks and scope of explosion
8: Generate Gaussian sparks
9: Combine fireworks, Explosion sparks, and 

Gaussian sparks to form a population
10: Evaluate the fitness of each individual
11: Select the candidate fireworks n
12: ULS is used to search next-generation

 fireworks n   
13:   Until termination criteria is met
14: Return the best individual and its   fitness
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Fun DE PSO FWA VACUFWA
f1 8.47E+00(2.14E+01)- 1.80E-01(2.15E-01)- 2.99E-29(1.56E-28)- 3.49E-31(1.80E-30)
f2 1.48E-01(2.83E-01)- 1.92E-01(2.91E-01)- 1.02E-19(2.80E-19)+ 2.69E-18(9.85E-18)
f3 1.02E+03(4.92E+02)- 2.34E+03(8.84E+02)- 3.68E-18(1.94E-17)- 7.84E-21(4.10E-20)
f4 2.46E+01(7.25E+00)- 1.29E+01(3.46E+00)- 1.14E-13(3.25E-13)+ 2.62E-12(1.30E-11)
f5 4.44E+04(1.83E+05)- 1.98E+02(1.25E+02)- 2.69E+01(5.81E+00)- 2.09E+01(1.12E+01)
f6 2.65E+01(4.15E+01)- 5.60E+00(1.07E+01)- 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)
f7 1.25E-01(6.46E-02)- 5.92E-02(2.08E-02)- 3.54E-03(4.36E-03)+ 4.61E-03(3.65E-03)
f8 -4.17E+03(4.58E+02)+ 5.85E+03(6.47E+02)- 6.37E+03(7.51E+02) - 4.99E+03(9.55E+02)
f9 1.88E+02(1.83E+01)- 5.05E+01(1.27E+01)- 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)
f10 2.11E+00(1.27E+00)- 1.50E+00(8.88E-01)- 4.74E-16(1.21E-15)- 2.37E-16(8.86E-16)
f11 6.52E-01(4.43E-01)- 2.09E-01(1.60E-01)- 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)
f12 9.88E+03(3.23E+04)- 1.87E+001.30E+00)- 8.03E-02(6.07E-02)- 3.61E-02(2.54E-02)
f13 1.26E+05(5.59E+05)- 1.19E+00(2.01E+00)- 5.97E-01(3.55E-01)- 4.22E-01(2.00E-01)

-/+/≈ 12/1/0 13/0/0 7/3/3

(Table 2) Mean(standard deviation) comparison of DE, PSO, FWA, and VACUFWA(D=30, EavTimes=10000)

4. Experimental simulation and 

analysis

4.1 Experimental parameters settings and 

test function 

The experimental hardware environment contains Intel 

Core i7-4770 CPU@3.40GHz processor, 8GB memory, and 

64-bit operating system. The software environment contains 

the Windows7 operating system and the Matlab R2018a 

version.

The parameters of VACUFWA and the comparison 

algorithms are set to the same. In the experiment, the 

dimensions of all 13 test functions are set to 30, and each 

function is run 30 times. 

13 well-known benchmark functions are adopted to analyze 

and verify the quality of the VACUFWA. Function f1~f7 is 

the unimodal function, and f8~f13 is the multimodal function 

with multiple minimum values [15].

To evaluate the experimental objectivity, the Wilcoxon 

rank-sum test and Friedman test in statistics are used to 

analyze the experimental results. The Wilcoxon rank-sum test 

based on the rank-sum of samples, which works for 

estimating whether two samples come from the same 

population and for analyzing whether the experimental results 

of the comparison algorithm have significant differences [19]. 

Friedman test uses rank to analyze whether there are 

significant differences in the population distribution of 

multiple independent samples. By ranking the mean rank of 

each sample to reflect the performance of the algorithm, the 

smaller the mean rank, the better the performance of the 

algorithm [20].

4.2 Experimental results and comparative 

analysis 

The experimental mean and standard deviation of the 

corresponding DE, PSO, FWA, and VACUFWA are 

compared. The Friedman test means rank of the experimental 

results of DE, PSO, FWA, and VACUFWA are 3.62, 3.15, 

1.81, and 1.42 respectively, which indicates that the 

performance of VACUFWA is the best among the 

comparison algorithms. 

The specific data is shown in Table 2; The former three 

algorithms are compared with the quality of the solution of 

VACUFWA. The three symbols of "-," "+," and "≈" represent 

the inferior, superior, and similarity of the solution of these 

algorithms respectively. The bold font indicates the optimal 

value of the mean in the comparison. Statistics of the 

Wilcoxon rank-sum test results of experimental data show 

that VACUFWA is superior to the other three algorithms in 

the 13 test functions. The mean of VACUFWA for the most 

functions is significantly improved than the FWA. It can be 

seen that the ULS operator and variable amplitude 
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(a) Sphere(f1) (b) Schwefel 1.2 (f3) (c) Rosenbrock (f5)

(d) Step (f6) (e) Schwefel 2.26 (f8) (f) Ackley (f10)

(h) Griewank (f11) (i) Penalized1 (f12) (j) Penalized2(f13)

(Figure 2)  The convergence curves of the standard DE, PSO, FWA, and VACUFWA on 9 test functions

coefficiency contributes significantly to VACUFWA, which 

has a good effect on functions f1, f3, f5, f8, f10, f12, and 

f13. To reflect the convergence process of the improved 

algorithm in detail, Figure 2 shows the convergence curves of  

9  representative functions.  

The abscissa in the figure represents the evaluation times 

of the function, which upper bound is 10000. The ordinate 

represents the mean of the objective function of 30 

experiments in the form of log10(f).

The following conclusions can be drawn from Figure 2. 

Firstly, the convergence of FWA is significantly better than 

DE, PSO, and the VACUFWA converges faster than FWA in 

the most test function. This phenomenon is caused by the 

strong local search capabilities of the ULS operator. 

Secondly, the VAC increases the rate of convergence of the 

test functions. In the early stage of evolution, the convergence 

speed of the FWA is similar to VACUFWA. In the middle 

and late stages of evolution, the VAC will decrease with the 

increase of evaluation times, which will cause the amplitude 

of explosion to decrease to generate more sparks in a small 

explosion range. Therefore, the convergence speed of 

VACUFWA is faster than the FWA in terms of functions f1, 

f3, f6, f8, f11, f12, and f13. Finally, function f6 and f11 

quickly converge to the optimal value; the solution quality of 

VACUFWA is also better than the FWA. 

5. Conclusion

In this paper, the ULS operator and VAC are used to 

VACUFWA for improving the search quality and 
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convergence speed of FWA respectively. VACUFWA 

balances further exploration and exploitation capability. 

According to the experimental results, the quality of 

VACUFWA is better than the standard DE and PSO. 

Meanwhile, VACUFWA also shows the superiority of the 

FWA, which proves that the ULS operator and VAC are 

effective. The result of experiments shows that VACUFWA 

is very competitive. We believe VACUFWA can bring 

significant advantages to practical optimization problems. Our 

ongoing work includes improving the current operators of 

VACUFWA to make the algorithm suitable for different 

functions and implementing the experiment of VACUFWA 

on the cloud computing platform. In the future, we will also 

seek the potential hybridization strategies of FWA.
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