• Title/Summary/Keyword: amplifiers

Search Result 731, Processing Time 0.021 seconds

Prediction of Gain Expansion and Intermodulation Performance of Nonlinear Amplifiers

  • Abuelma'atti, Muhammad Taher
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.89-94
    • /
    • 2007
  • A mathematical model for the input-output characteristic of an amplifier exhibiting gain expansion and weak and strong nonlinearities is presented. The model, basically a Fourier-series function, can yield closed-form series expressions for the amplitudes of the output components resulting from multisinusoidal input signals to the amplifier. The special case of an equal-amplitude two-tone input signal is considered in detail. The results show that unless the input signal can drive the amplifier into its nonlinear region, no gain expansion or minimum intermodulation performance can be achieved. For sufficiently large input amplitudes that can drive the amplifier into its nonlinear region, gain expansion and minimum intermodulation performance can be achieved. The input amplitudes at which these phenomena are observed are strongly dependent on the amplifier characteristics.

  • PDF

Novel Voltage-Mode Active-Only Biquad with Two Integrator Loops

  • Tsukutani, Takao;Higashimura, Masami;Kinugasa, Yasutomo;Sumi, Yasuaki;Fukui, Yutaka
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.207-210
    • /
    • 2000
  • This paper introduces a voltage-mode biquadratic circuit using only Operational Amplifiers (OTAs) and Operational Transconductance Amplifiers (OTAs). The proposed circuit can realize low-pass, band-pass, high-pass, band-stop and all-pass transfer functions by suitably choosing the input and output terminals. And the circuit characteristics can be electronically tuned through adjusting the transconductance gains of OTAs. Some examples are given together with simulated results by PSpice. The circuit configuration is very suitable for implementation in both bipolar and CMOS technologies.

  • PDF

Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications

  • Kim, Chang-Woo
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.386-388
    • /
    • 2006
  • Monolithic SiGe heterojunction bipolar transistor (HBT) variable gain amplifiers (VGAs) with a feedforward configuration have been newly developed for 5 GHz applications. Two types of the feedforward VGAs have been made: one using a coupled-emitter resistor and the other using an HBT-based current source. At 5.2 GHz, both of the VGAs achieve a dynamic gain-control range of 23 dB with a control-voltage range from 0.4 to 2.6 V. The gain-tuning sensitivity is 90 mV/dB. At $V_{CTRL}$= 2.4 V, the 1 dB compression output power, $P_{1-dB}$, and dc bias current are 0 dBm and 59 mA in a VGA with an emitter resistor and -1.8 dBm and 71mA in a VGA with a constant current source, respectively.

  • PDF

New N-way Hybrid Power Combiner to Improve the Graceful Degradation Performance

  • Eom, Soon-Young;Kim, Jeong-Ho;Yim, Choon-Sik
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • In this paper, a new N-way hybrid power combiner for improving the graceful degradation performance has been proposed. The proposed combiner has been configured with two dummy transmission lines per each section, where each dummy transmission line has a different characteristic impedance, of the standard combiner. Under this proposed configuration, a detailed theoretical analysis has been performed to show the general function of a power combiner. When any M amplifiers among N identical amplifiers are suffering the failure mode in a power combining circuit or system, the graceful degradation performance has been improved due to the separation of a transmission line and an internal resistor in every failed section from the proposed combiner by simultaneously operating two shorting devices. Simulation results for all the items which can be measured from all the items which can be measured from the proposed combiner with an eight-way configuration have been presented.

  • PDF

An OTA with Positive Feedback Bias Control for Power Adaptation Proportional to Analog Workloads

  • Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • This paper reports an adaptive positive feedback bias control technique for operational transconductance amplifiers to adjust the bias current based on the output current monitored by a current replica circuit. This technique enables operational transconductance amplifiers to quickly adapt their power consumption to various analog workloads when they are configured with negative feedback. To prove the concept, a test voltage follower is fabricated in $0.5-{\mu}m$ CMOS technology. Measurement result shows that the power consumption of the test voltage follower is approximately linearly proportional to the load capacitance, the signal frequency, and the signal amplitude for sinusoidal inputs as well as square pulses.

Ultra-Dense WDM PON with 12.5-GHz Spaced 256 Channels

  • Yim, Jae-Nam;Hwang, Gyo-Sun;Lee, Jae-Seung;Seo, Kyung-Hee;Lee, Hyun-Jae;Ko, Je-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.351-354
    • /
    • 2008
  • We demonstrate an ultra-dense wavelength-division- multiplexed (UD-WDM) passive optical network (PON) where 12.5-GHz spaced 1 GbE ${\times}$ 256 optical channels are distributed using 12.5- and 200-GHz arrayed waveguide gratings in series. For the generation of upstream signals, we use reflective semiconductor optical amplifiers. We use two optical fiber amplifiers at the optical line terminal to amplify downstream and upstream channels.

Multi-Stage CMOS OTA Frequency Compensation: Genetic algorithm approach

  • Mohammad Ali Bandari;Mohammad Bagher Tavakoli;Farbod Setoudeh;Massoud Dousti
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.690-703
    • /
    • 2023
  • Multistage amplifiers have become appropriate choices for high-speed electronics and data conversion. Because of the large number of high-impedance nodes, frequency compensation has become the biggest challenge in the design of multistage amplifiers. The new compensation technique in this study uses two differential stages to organize feedforward and feedback paths. Five Miller loops and a 500-pF load capacitor are driven by just two tiny compensating capacitors, each with a capacitance of less than 10 pF. The symbolic transfer function is calculated to estimate the circuit dynamics and HSPICE and TSMC 0.18 ㎛. CMOS technology is used to simulate the proposed five-stage amplifier. A straightforward iterative approach is also used to optimize the circuit parameters given a known cost function. According to simulation and mathematical results, the proposed structure has a DC gain of 190 dB, a gain bandwidth product of 15 MHz, a phase margin of 89°, and a power dissipation of 590 ㎼.

Floating Inverter Amplifiers with Enhanced Voltage Gains Employing Cross-Coupled Body Biasing

  • Jae Hoon Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.12-17
    • /
    • 2024
  • Floating inverter amplifiers (FIAs) have recently garnered considerable attention owing to their high energy efficiency and inherent resilience to input common-mode voltages and process-voltage-temperature variations. Since the voltage gain of a simple FIA is low, it is typically cascaded or cascoded to achieve a higher voltage gain. However, cascading poses stability concerns in closed-loop applications, while cascoding limits the output swing. This study introduces a gain-enhanced FIA that features cross-coupled body biasing. Through simulations, it is demonstrated that the proposed FIA designed using a 28-nm complementary metal-oxide-semiconductor technology with a 1-V power supply can achieve a high voltage gain (> 90 dB) suitable for dynamic open-loop applications. The proposed FIA can also be used as a closed-loop amplifier by adjusting the amount of positive feedback due to the cross-coupled body biasing. The capability of achieving a high gain with minimum-length devices makes the proposed FIA a promising candidate for low-power, high-speed sensor interface systems.