• Title/Summary/Keyword: amorphous chalcogenide

Search Result 115, Processing Time 0.022 seconds

The physical properties and switching characteristics of amorphous $Ge_2Sb_2Te_5$ thin film (비정질 $Ge_2Sb_2Te_5$ 박막의 물리적 성질 및 스위칭 특성)

  • Lee, Jae-Min;Yang, Sung-Jun;Shin, Kyung;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.268-271
    • /
    • 2004
  • The phase transition from amorphous to crystalline states, and vice versa, of $Ge_2Sb_2Te_5$ films by applying electrical pulses have been studied. This material can be used as nonvolatile memory. The reversible phase transition between the amorphous and crystalline states, which is accompanied by a considerable change in electrical resistivity, is exploited as means to store bits of information. The nonvolatile memory cells are composed of a simple sandwich (metal/chalcogenide/metal). It was formed that the threshold voltage depends on thickness, electrode distance, annealing time and temperature, respectively.

  • PDF

The Measurement on Diffraction Efficiency in Polarization Holography using Amorphous Chalcogenide Thin Films (칼코게나이드 박막을 이용한 편광 홀로그래픽의 회절효율 측정)

  • 장선주;여철호;이현용;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.87-90
    • /
    • 1999
  • The dependence of diffraction efficiency as a funct~on of film thickness and incident angle has been investigated in amorphous chalcogenide thin films, which act as a polarization holographic materials. Especially a-(Se, S) based films exhibit a number of photoinduced phenomena not observed in other types of amorphous thin films. Holographic gratings in amorphous As-Ge-Se-S thin films have been formed using the mutual perpendicular polarized(linearly) He-Ne laser light. We could obtain the optimum condition to get high diffraction efficiency.

  • PDF

A Study on the Thermal, Electrical Characteristics of Ge-Se-Te Chalcogenide Material for Use in Phase Change Memory

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.223-226
    • /
    • 2008
  • $Ge_1Se_1Te_2$ chalcogenide amorphous materials was prepared by the conventional melt-quenching method. Samples were processed bye-beam evaporator systems and RF-sputtering systems. Phase change characteristics were analyzed by measuring glassification temperature, crystallization temperature and density of bulk material. The thermal characteristics were measured at the temperature between 300 K and 700 K, and the electrical characteristics were studied within the range from 0 V to 3 V. The obtained results agree with the electrothermal model for Phase-Change Random Access Memory.

Amorphous chalcogenide thin films of relief grating formation by using He-Cd laser (He-Cd 레이져를 이용한 비정질 칼코계나이드 박막의 relief 격자 형성)

  • Lee, Ki-Nam;Park, Jung-Il;Yang, Sung-Jun;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1058-1061
    • /
    • 2003
  • In this thesis, we observed the optical characteristic of amorphous chalcogenide thin films by He-Cd laser. Also, grating formation by He-Ne laser and He-Cd laser. After analyze diffraction efficiency of the time on the $Ag(200{\AA})/As_{40}Ge_{10}Se_{15}S_{35}$ thin films. The result diffraction efficiency of Maximun 0.2% reduced according to time grating formation by He-Ne laser. Diffraction efficiency of Maximun 0.1% showed stabiliy characteristic according to time grating formation by He-Cd laser.

  • PDF

Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구)

  • Ko, Jun Bin;Myung, Tae Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

Holographic Grating Erasing Characteristics by Non-polarized Beam in Amorphous Chalcogenide Thin Films

  • Lee, Ki-Nam;Park, Jeong-Il;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.141-144
    • /
    • 2006
  • In the present work, we investigated the holographic grating erasing method by means of the optical method. It was formed the grating under the interference of holographic recording He-Ne laser beams on chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film with various film thickness and erased the holographic grating by non-polarized He-Ne laser beam. As the results, the recording grating erased the 80 % of formed grating by non-polarized He-Ne laser beam. It was confirmed that the erasing characteristics by non-polarized laser beam need to improve the focusing of beam and the control of beam intensity. And then it can be expected as the application possibility of rewritable holographic memory technology.

Chalcogenide Ge-Sb-Se Optical and Crystallization Characteristics for Basic a Planning Aspheric Lens (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se 광학계 및 결정화 특성 연구)

  • Myung, Tae Sik;Ko, Jun Bin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.598-603
    • /
    • 2016
  • The recent development of electro-optic devices and anticorrosion media has led to the necessity to investigate infrared optical systems with solid-solid interfaces of materials that often have the characteristic of amorphousness. One of the most promising classes of materials for those purposes seems to be the chalcogenide glasses. Chalcogenide glasses, based on the Ge-Sb-Se system, have drawn a great deal of attention because of their use in preparing optical lenses and transparent fibers in the range of 3~12 um. In this study, amorphous Ge-Sb-Se chalcogenide for application in an infrared optical product design and manufacture was prepared by a standard melt-quenching technique. The results of the structural, optical and surface roughness analysis of high purity Ge-Sb-Se chalcogenide glasses are reported after various annealing processes.

The manufacturing of waveguide using the photonic crystals (2차원 포토닉 크리스탈을 이용한 도파관 제작)

  • Han, Song-Lee;Park, Hyung-Kwan;Lee, Song-Hee;Hong, Sung-Jun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.163-164
    • /
    • 2008
  • Chalcogenide glass has been known for many photo induced phenomena and superial electron / optical specific by structure flexibility, unique electronic configuration. It is become known to the greatest specific as photonic material medium that possible to perfect controlling by continuity and photo inducing direction of amorphous chalcogenide. In our experiment, we choose the amorphous As-Ge-Se-S and corning glass as a substrate. And then we have evaporated in the ${\sim}2{\times}10^{-6}$ Torr using a E-beam evaporator, completed thin film sample that have 1um thickness of As-Ge-Se-S in $600{\AA}$, $10{\sim}5{\AA}/s$. At first, we let the change the angle between laser and sample by holography litho method and then, expect that satisfied conclusion which 2-dimension diffraction lattice manufacture and specifics by investing a He-Ne laser for 2000 seconds.

  • PDF

The manufacturing of waveguide using the photonic crystals (포토닉 크리스탈을 이용한 도파관 제작)

  • Lee, Song-Hee;Park, Hyung-Kwan;Han, Song-Lee;Hong, Sung-Jun;Gho, Saon-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.130-131
    • /
    • 2008
  • Chalcogenide glass has been known for many photo induced phenomena and superial electron / optical specific by structure flexibility, unique electronic configuration. It is become known to the greatest specific as photonic material medium that possible to perfect controlling by continuity and photo inducing direction of amorphous chalcogenide. In our experiment, we choose the amorphous As-Ge-Se-S and coming glass as a substrate. And then we have evaporated in the ${\sim}2{\times}10^{-6}$ Torr using a E-beam evaporator, completed thin film sample that have 1um thickness of As-Ge-Se-S 600 $\AA$, 10~5 $\AA$/s. At first, we let the change the angle between laser and sample by holography litho method and then, expect that satisfied conclusion which 2-dimension diffraction lattice manufacture and specifics by investing a He-Ne laser for 2000 seconds.

  • PDF

Phase change properties of amorphous $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ chalcogenide thin films. (비정질 $Ge_1Se_1Te_2$$Ge_2Se_2Te_5$ 칼코게나이드박막의 상변화특성)

  • Chung, Hong-Bay;Cho, Won-Ju;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.118-119
    • /
    • 2006
  • In the present work, we investigate the basic physical and thermal properties and electrical resistance change due to phase change in chalcogenide-based $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ thin films. The phase transition from amorphous to crystalline states, and vice versa, of $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ thin films by applying electrical pulses have been studied. The reversible phase transition between the amorphous and crystalline states, which is accompanied by a considerable change in electrical resistivity, is exploited as means to store bits of information.

  • PDF