• 제목/요약/키워드: amorphous/crystalline Si

Search Result 227, Processing Time 0.029 seconds

Microstructure and Strength of Alkali-Activated Kaolin-Fly Ash Blend Binder (카올린-플라이애시 혼합 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Kim, Tae-Wan;Oh, Jae-Eun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This study presents microstructural characteristics and strength properties of alkali-activated kaolin(K)-fly ash(FA) blends binders. The compressive strength, X-ray diffraction(XRD), thermogravimetric(TG) analysis and SEM/EDS were measured for hardened samples. The results were shown that all the samples had developed the compressive strength over time, regardless of replacement levels of K. It was found that when the amount of K increased, the strengths of samples decreased. In XRD result, no new crystalline phases were observed in all the hardened samples other than the crystalline components of raw FA and K, whereas TG analysis showed that N-A-S-H gel was formed as a reaction product in all the samples. Samples did not have the typical microstructure of dense, and there is little significant difference between the microstructures of the samples despite the differences in the strength testing results with replacement ratios of K. This study showed that the strength of sample was larger for lower Si/Al ratio of reaction product formed in sample. According to the correlation between Si/Al ratio and strength in this study, it is expected that if a chemical additive is used for lowering the Si/Al ratio of reaction product(i.e., increasing the $Al_2O_3$ solubility) in alkali-activated K-FA blends binders, strength improvement in K-FA blends binders could be achieved.

Formation of the Diamond Thin Film as the SOD Sturcture (SOD 구조 형성에 따른 다이아몬드 박막 형성)

  • Ko, Jeong-Dae;Lee, You-Seong;Kang, Min-Sung;Lee, Kwang-Man;Lee, Kae-Myoung;Kim, Duk-Soo;Choi, Chi-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1067-1073
    • /
    • 1998
  • High quality diamond films of the silicon on diamond (SOD) structure are deposited using CO and $H_2$ gas mixture in microwave plasma chemical vapor deposition (CVD), a SOD structure is fabricated using low pressure CVD polysilicon on diamond/ Si(100) substrate. The crystalline structure of the diamond films which composed of { 111} and {100} planes. were changed from octahedral one to cubo-octahedron one as the CO/$H_2$ ratios are increased. The high quality diamond films without amorphous carbon and non-diamond elements were deposited at the CO/$H_2$ flow rate of 0.18. and the main phase of the diamond films shows (111) plane. The diamond/Si(lOO) structure shows that the interface is flat without voids. The measured dielectric constant. leakage current and breakdown field were $5.31\times10^{-9}A/cm^2$ and $9\times{10^7}{\Omega}cm$ respectively.

  • PDF

The Effect of SiO2 addition on Oxidation and Electrical Resistance Stability at High-temperature of P/M Fecralloy Compact (P/M Fecralloy 성형체의 고온산화 및 전기저항 안정성에 미치는 SiO2 첨가 효과)

  • Park, Jin-Woo;Ok, Jin-Uk;Jung, Woo-young;Park, Dong-kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at $950^{\circ}C$ for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and $Al_2O_3$ upon the addition of Si oxide. Si oxides promote the formation of $Al_2O_3$ and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.

Electrical Property of the Li2O-2SiO2 Glass Sintered by Spark Plasma Sintering (Spark Plasma Sintering으로 제조한 Li2O-2SiO2 유리 소결체의 전기적 특성)

  • Yoon, Hae-Won;Song, Chul-Ho;Yang, Yong-Seok;Yoon, Su-Jong
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.61-65
    • /
    • 2012
  • A $Li_2O-2SiO_2$ ($LS_2$) glass was investigated as a lithium-ion conducting oxide glass, which is applicable to a fast ionic conductor even at low temperature due to its high mechanical strength and chemical stability. The $Li_2O-2SiO_2$ glass is likely to be broken into small pieces when quenched; thus, it is difficult to fabricate a specifically sized sample. The production of properly sized glass samples is necessary for device applications. In this study, we applied spark plasma sintering (SPS) to fabricate $LS_2$ glass samples which have a particular size as well as high transparency. The sintered samples, $15mm\phi{\times}2mmT$ in size, ($LS_2$-s) were produced by SPS between $480^{\circ}C$ and $500^{\circ}C$ at 45MPa for 3~5mim, after which the thermal and dielectric properties of the $LS_2$-s samples were compared with those of quenched glass ($LS_2$-q) samples. Thermal behavior, crystalline structure, and electrical conductivity of both samples were analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and an impedance/gain-phase analyzer, respectively. The results showed that the $LS_2$-s had an amorphous structure, like the $LS_2$-q sample, and that both samples took on the lithium disilicate structure after the heat treatment at $800^{\circ}C$. We observed similar dielectric peaks in both of the samples between room temperature and $700^{\circ}C$. The DC activation energies of the $LS_2$-q and $LS_2$-s samples were $0.48{\pm}0.05eV$ and $0.66{\pm}0.04eV$, while the AC activation energies were $0.48{\pm}0.05eV$ and $0.68{\pm}0.04eV$, respectively.

CHARACTERISTICS OF HETEROEPITAXIALLY GROWN $Y_2$O$_3$ FILMS BY r-ICB FOR VLSI

  • Choi, S.C.;Cho, M.H.;Whangbo, S.W.;Kim, M.S.;Whang, C.N.;Kang, S.B.;Lee, S.I.;Lee, M.Y.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.809-815
    • /
    • 1996
  • $Y_2O_3$-based metal-insulator-semiconductor (MIS) structure on p-Si(100) has been studied. Films were prepared by UHV reactive ionized cluster beam deposition (r-ICBD) system. The base pressure of the system was about $1 \times 10^{-9}$ -9/ Torr and the process pressure $2 \times 10^{-5}$ Torr in oxygen ambience. Glancing X-ray diffraction(GXRD) and in-situ reflection high energy electron diffracton(RHEED) analyses were performed to investigate the crystallinity of the films. The results show phase change from amorphous state to crystalline one with increasingqr acceleration voltage and substrate temperature. It is also found that the phase transformation from $Y_2O_3$(111)//Si(100) to $Y_2O_3$(110)//Si(100) in growing directions takes place between $500^{\circ}C$ and $700^{\circ}C$. Especially as acceleration voltage is increased, preferentially oriented crystallinity was increased. Finally under the condition of above substrate temperature $700^{\circ}C$ and acceleration voltage 5kV, the $Y_2O_3$films are found to be grown epitaxially in direction of $Y_2O_3$(1l0)//Si(100) by observation of transmission electron microscope(TEM). Capacitance-voltage and current-voltage measurements were conducted to characterize Al/$Y_2O_3$/Si MIS structure with varying acceleration voltage and substrate temperature. Deposited $Y_2O_3$ films of thickness of nearly 300$\AA$ show that the breakdown field increases to 7~8MV /cm at the same conditon of epitaxial growing. These results also coincide with XPS spectra which indicate better stoichiometric characteristic in the condition of better crystalline one. After oxidation the breakdown field increases to 13MV /cm because the MIS structure contains interface silicon oxide of about 30$\AA$. In this case the dielectric constant of only $Y_2O_3$ layer is found to be $\in$15.6. These results have demonstrated the potential of using yttrium oxide for future VLSI/ULSI gate insulator applications.

  • PDF

Growth and thermal annealing of polycrystalline Ga2O3/diamond thin films on Si substrates (다결정 산화갈륨/다이아몬드 이종 박막 성장 및 열처리 효과 연구)

  • Seo, Ji-Yeon;Kim, Tae-Gyu;Shin, Yun-Ji;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.233-239
    • /
    • 2021
  • In this study, Ga2O3/diamond layers were grown on Si substrates to improve the thermal characteristics of Ga2O3 materials. Firstly, diamond thin film was grown on Si substrates by hot-filament chemical vapor deposition. Afterward, Ga2O3 layer was grown in the growth temperature range of from 450~600℃ by mist chemical vapor deposition. We found that layer separation happens at the Ga2O3/diamond interface at the growth temperature of 500℃. This is attributed to the different thermal expansion coefficient of the mixture of amorphous and crystalline structures during cooling process. Therefore, this study might contribute to the heat-sink-layer bonded power semiconductor applications by stabilizing the thermal properties at Ga2O3/diamond interface.

Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure (Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성)

  • Oh, Kwang H.;Jeong, Hyejeong;Chi, Eun-Ok;Kim, Ji Chan;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

Synthesis of Silicon-Carbon by Polymer Coating and Electrochemical Properties of Si-C|Li Cell (고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay-Hyeok;Min, Byung-Chul;Choi, Im-Goo;Park, Chul-Wan;Lee, Kyeong-Jik;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

Schottky Contact Application을 위한 Yb Germanides 형성 및 특성에 관한 연구

  • Na, Se-Gwon;Gang, Jun-Gu;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.399-399
    • /
    • 2013
  • Metal silicides는 Si 기반의microelectronic devices의 interconnect와 contact 물질 등에 사용하기 위하여 그 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 이 중 Rare-earth(RE) silicides는 저온에서 silicides를 형성하고, n-type Si과 낮은 Schottky Barrier contact (~0.3 eV)을 이룬다. 또한 낮은 resistivity와 Si과의 작은 lattice mismatch, 그리고 epitaxial growth의 가능성, 높은 thermal stability 등의 장점을 갖고 있다. RE silicides 중 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 n-channel schottky barrier MOSFETs의 source/drain으로 주목받고 있다. 또한 Silicon 기반의 CMOSFETs의 성능 향상 한계로 인하여 germanium 기반의 소자에 대한 연구가 이루어져 왔다. Ge 기반 FETs 제작을 위해서는 낮은 source/drain series/contact resistances의 contact을 형성해야 한다. 본 연구에서는 저접촉 저항 contact material로서 ytterbium germanide의 가능성에 대해 고찰하고자 하였다. HRTEM과 EDS를 이용하여 ytterbium germanide의 미세구조 분석과 면저항 및 Schottky Barrier Heights 등의 전기적 특성 분석을 진행하였다. Low doped n-type Ge (100) wafer를 1%의 hydrofluoric (HF) acid solution에 세정하여 native oxide layer를 제거하고, 고진공에서 RF sputtering 법을 이용하여 ytterbium 30 nm를 먼저 증착하고, 그 위에 ytterbium의 oxidation을 방지하기 위한 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, rapid thermal anneal (RTA)을 이용하여 N2 분위기에서 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium germanides를 형성하였다. Ytterbium germanide의 미세구조 분석은 transmission electron microscopy (JEM-2100F)을 이용하였다. 면 저항 측정을 위해 sulfuric acid와 hydrogen peroxide solution (H2SO4:H2O2=6:1)에서 strip을 진행하여 TiN과 unreacted Yb을 제거하였고, 4-point probe를 통하여 측정하였다. Yb germanides의 면저항은 열처리 온도 증가에 따라 감소하다 증가하는 경향을 보이고, $400{\sim}500^{\circ}C$에서 가장 작은 면저항을 나타내었다. HRTEM 분석 결과, deposition 과정에서 Yb과 Si의 intermixing이 일어나 amorphous layer가 존재하였고, 열처리 온도가 증가하면서 diffusion이 더 활발히 일어나 amorphous layer의 두께가 증가하였다. $350^{\circ}C$ 열처리 샘플에서 germanide/Ge interface에서 epitaxial 구조의 crystalline Yb germanide가 형성되었고, EDS 측정 및 diffraction pattern을 통하여 안정상인 YbGe2-X phase임을 확인하였다. 이러한 epitaxial growth는 면저항의 감소를 가져왔으며, 열처리 온도가 증가하면서 epitaxial layer가 증가하다가 고온에서 polycrystalline 구조의 Yb germanide가 형성되어 면저항의 증가를 가져왔다. Schottky Barrier Heights 측정 결과 또한 면저항 경향과 동일하게 열처리 증가에 따라 감소하다가 고온에서 다시 증가하였다.

  • PDF

Synthesis and Characterization of Si-C-N Precursor by Using Chemical Vapor Condensation Method (화학기상응축법을 이용한 Si-C-N Precursor 분말의 합성 및 특성평가)

  • Kim, Hyoung-In;Kim, Dae-Jung;Hong, Jin-Seok;So, Myoung-Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.783-788
    • /
    • 2002
  • In this study, nano-sized Si-C-N precursor powders were synthesized by Chemical Vapor Condensation Method(CVC) using TMS(Tetramethylsilane: Si($CH_3)_4$), $NH_3$ and $H_2$ gases under the various reaction conditions of the reaction temperature, TMS/$NH_3$ ratio and TMS/$H_2$ ratio. XRD and FESEM were used to analysis the crystalline phase and the average particle size of the synthesized powders. It was found that the obtained powders under the considering conditions were all spherical amorphous powder with the particle size of 87∼130 nm. The particle size was decreased as the reaction temperature increased and TMS/$NH_3$ and TMS/$H_2$ ratio decreased. As the results of EA analysis, it was found that the synthesized powders had been formed the powders composed of Si, N, C and H. Through FT-IR results, it was found that the synthesized powders were Si-C-N precursor powders with Si-C, Si-N and C-N bonds.