• Title/Summary/Keyword: ammonia removal,

Search Result 563, Processing Time 0.029 seconds

Removal of Nitrate in Groundwater by Bipolar ZVI Packed Bed Electrolytic Cell at Field Pilot (지하수중의 질산성질소 제거를 위한 영가철 충진 복극전해조의 현장적용에 관한 연구)

  • Na, So-Jeong;Jeong, Joo-Young;Kim, Han-Ki;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.989-994
    • /
    • 2011
  • Nitrate contamination of groundwater is a common problem throughout intensive agriculture areas (non-point source pollution). Current processes (e.g. ion exchange and membrane separation) for nitrate removal have various disadvantages. The objective of this study was to evaluate electrochemical method such as electroreduction using bipolar ZVI packed bed electrolytic cell to remove nitrate from groundwater at field pilot. In addition ammonia stripping tower continuously removed up to 77.0% of ammonia. Bipolar ZVI packed bed electrolytic cell also removed E.coli. In the field pilot experiment for groundwater in 'I' city (average nitrate 30~35 mg N/L, pH 6.4), maximum 99.9% removal of nitrate was achieved in the applied 600 V.

Ammonia Removal Characteristics of Artificial Zeolite Pellet Using Multi-Stage Adsorption Column (다단계 흡착장치를 이용한 인공제오라이트 펠렛의 암모니아 제거 특성)

  • 김완태;이성오;윤연흠;신방섭
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.20-26
    • /
    • 1998
  • The mdy is to investigate the capanty and charactoristics of ammonia removal from waste water by artificial zeolite pellet which was synlhesized physicochemically using fly ash. A multi-stage adsorption method was adapted anrl the zeolile pellct as well as two types of natural zeolites are used for adsorption tests of ammonia io order to compare he adsorption capabilities with one anothcr. The expzrimmts was conducted into thrze stages, lhat is early, mddle and last according la the adsorbing stage and lhe number of column used. When camparing the removal efiicicncy in the final stage namral rcolites ratcd 64.5% and 78 5%, while zeohtc pdct rated 80.596, which showed larger amount of ammonia was adsorbed continuously than in other samples. Thc amount of adsorbed ammonia increased rs thc concenlraiion of ammonia increased and tl~e va~iation depending on the pH range showcd that larger amaunt of ammonia tended to be adsorbed m the neutral or akali pH range than in the acid pH range.

  • PDF

A Kinetic Study on the Ammonia Nitrogen Adsorption by Physical Characteristics of Activated Carbon (활성탄 물성에 따른 암모니아성 질소 흡착의 동력학적 연구)

  • Seo, Jeong-beom;Kang, Joon-won;Lee, Ik-soo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • This study aimed to obtain equilibrium concentration on adsorption removal of ammonia nitrogen by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical characteristics of activated carbon and dynamics of ammonia nitrogen removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. It was noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon was $4.6{\times}10^{-8}$ which is bigger than that of granular activated carbon. The adsorption rate constant on ammonia nitrogen of powered activated carbon with high porosity and low effective diameter was highest as 0.416 hr-1 and the effective pore diffusivity ($D_e$) was lowest as $1.17{\times}10^{-6}cm^2/hr$, and the value of ammonia nitrogen adsorption rate constant of granular activated carbon was $0.149{\sim}0.195hr^{-1}$. It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter and bigger porosity was better and its rate constant was also high. With a little adsorbent dosage of 2 g, there was no difference removal ability of ammonia nitrogen as change of adsorption properties.

Salt Acclimation Behavior of the Nitrifier Consortium for the Nitrification of Saline Wastewater

  • Seo, Jae-Koan;Kim, Sung-Koo
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.590-593
    • /
    • 2001
  • The effect of salinity on the nitrification efficiency of the nitrifier consortium was evaluated for the nitrification of saline wastewater. The nitrifier consortium, which was the activated sludge acclimated with ammonium as the only energy source, was used as the nitrifier for the salt acclimation. Airlift reactors for the nitrification of ammonia with increasing concentration in saline synthetic wastewater (35 g/I NaCD, and synthetic wastewater without salt as a control, were continuously operated with the nitrifier consortium for 43 days. The ammonia removal rate was about 23g ammonia-N/$m^3$/day in both the absence and presence of the salt. An accumulation of nitrite was observed in the saline nitrification reactor at an early period. However, the nitrite decreased to less than 1 mg/l after 39 days of operation. The salinity increased the acclimation time of the nitrifier consortium to obtain a stable marine nitrification system. However, the salt acclimated system showed the efficient removal of ammonia which was same as that without salt.

  • PDF

Removal of Ammonia from Aqueous Solutions with Zeolite and Bentonite (제오라이트 및 벤토나이트에 의한 수용액중 암모니아의 제거)

  • 이화영;오종기;김성규;고현백
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 2002
  • Relnoval of ammonia from aqueous solutions has been studied with zeolite and bentonite minerals. Zeolite and bentonite powder were supplied by a domestic company and used as delivered without further purification. The aqueous pH was found to increase by addition of zeolite or bentonite up to pH 8.5 from initial pH of 5.5∼5.7. From the C.E.C. measurement by ammonium acetate leaching method, the values of C.E.C. of zeolite and bentonite sample were observed to be 129.7 meq/100 gr and 65.1 meq/100 gr, respectively and Na+ ion accounted for the major part of total C.E.C. in both cases. In the removal of ammonia with zeolite and bentonite, physical adsorption of ammonium ion onto minerals was believed to contribute to the removal of it as well as the intrinsic cation exchange reaction. Finally, zeolite was found to be superior to bentonite in the removal of ammonia from aqueous solutions.

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.

Effect on the Hydrogen Peroxide in the Ozonation of Ammonia (오존에 의한 암모니아 산화시 과산화수소가 미치는 영향)

  • 박문숙;안재동;노봉오
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Ammonia is used in the manufacture of fertilizers, refrigerants, stabilizers and many household cleaning agents. These wide applications resulted in ammonia contamination in water. Ammonia can be removed from water by physical, biological, and chemical methods. Ozonation is effictive in the treatment of water with low concentration of ammonia. This study is undertaken to provide kinetic data for the ozonation of ammonia with or without hydrogen peroxide. The results were as follows; The destruction rate of ammonia increased gradually with the influent hydrogen peroxide concentration up to 0.23 mM and inhibited in the range of 0.23~11.4mM, and the maximum removal rate of ammonia achieved at 0.23mM of hydrogen peroxide, and the overall kinetics was first order. The combination effect of hydrogen and ozone to oxide ammonia in aqueous solution was better than ozone alone. The reacted ammonia was converted completely to nitrate ion.

  • PDF

Performance Analysis for Ammonia Reduction of Biofilter Using Swine Compost as Filter Material (돈분퇴비를 여재로 이용한 Biofilter의 암모니아 제거효율)

  • Jang, Young-Soo;Oh, In-Hwan;Hwang, Hyun-Seob;Park, Sang-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.253-259
    • /
    • 2008
  • In this paper an optimum design of a lab-scale biofilter for absorbing ammonia has been proposed and analyzed. This biofilter is using pine chaff and wood shaving as filter materials. It is assumed that the biofilter can be used as a storage tank of swine manure slurry or swine stall. To evaluate the biofilter performance, the ammonia, mainly offensive odor ingredient, was measured. Swine compost was mixed with filter materials in ratio of 1:1 on weight base. Each test continued for 20 days. The ammonia emissions were reduced by 97.9% and 98.3% in case of using biofilter filled with pine chaff and compost, and wood shaving and compost, respectively. The system was tested with and without adding compost. It was found that the biofilter with wood shaving and compost has an ammonia removal efficiency of 94.1%, while biofilter with wood shaving only has 85.3%. The biofilter with wood shaving and compost showed 8.8% higher removal efficiency than that of wood shaving only. By mixing the compost, the number of microorganism was found to be about 2.3 times more than that of wood shaving only. Therefore it can be concluded that adding compost has a positive effect on the formation of microorganism.

Effect of Temperature on Removal of Ammonia in the Ceramic Biofilter Inoculated with Earthworm Casts (지렁이 분변토를 접종한 세라믹 바이오필터의 암모니아 제거에 미치는 온도의 영향)

  • Cho, Kyung-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • Removal of ammonia using the porous ceramic biofilter inoculated with earthworm casts was characterized. By assuming a plug air flow in the biofilter and applying the Michaelis-Menten equation, the maximum removal rate of $NH_3$ was $280.7g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.0g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $30^{\circ}C$. $NH_3$ removal rate was increased as temperature increases from $15^{\circ}C$ to $35^{\circ}C$. The maximum removal rate was $285.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.8g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $35^{\circ}C$. At $15^{\circ}C$, the $NH_3$ removal rate was $122.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($8.1g-N{\cdot}kg^{-1}{\cdot}d^{-1}$). When 210 ppm $NH_3$ was supplied to the biofilter at space velocity of $220h^{-1}$, the removal efficiency of $NH_3$ at 15, 25, 30 and $35^{\circ}C$ was 80, 90, 95, and 96%, respectively. The removal rate of the ceramic biofilter was 3 to 15 times higher than other biofilters comparing the removal efficiency of $NH_3$ per unit volume of carrier. This result indicates that earthworm casts and porous ceramics are very good inoculum source and carrier, respectively, for the $NH_3$-degrading biofilter.

  • PDF

Effect of MLSS and Micro-algae on Nitrification based Photosynthetic Oxygen (MLSS와 미세조류가 광합성 산소기반 질산화에 미치는 영향)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.508-514
    • /
    • 2017
  • Water-bloom and red tide due to eutrophication have been overgrown and have caused various environmental problems. Recently, however, research on bid-diesel that can utilize algae as an energy source has been actively carried out. In particular, many studies variously have been conducted to utilize algal photosynthesis oxygen as a supply method for reducing the energy by an air blower in MWTP. In this study, a lab scale algae-nitrification reactor was operated to replace the oxygen required for nitrogen removal and the operation period was largely divided into three sections. In the first section, ammonia nitrogen removal efficiency was 24 ~ 38% according to the MLSS (Mixed Liquer Suspended Solid) concentration. In the second section, ammonia nitrogen removal efficiency was 38 ~ 50% according to the micro-algae concentration and in the last section ammonia nitrogen removal efficiency was 61 ~ 80% according to HRT (Hydraulic Retention Time). As a result, as the MLSS decreased and algae biomass increased, the ammonia nitrogen removal efficiency tended to increase, but the effect of Algae biomass was greater than that of MLSS.