Removal of Nitrate in Groundwater by Bipolar ZVI Packed Bed Electrolytic Cell at Field Pilot

지하수중의 질산성질소 제거를 위한 영가철 충진 복극전해조의 현장적용에 관한 연구

  • 나소정 (한양대학교 건설환경공학과) ;
  • 정주영 (한양대학교 건설환경공학과) ;
  • 김한기 (한양대학교 건설환경공학과) ;
  • 박주양 (한양대학교 건설환경공학과)
  • Published : 2011.12.15

Abstract

Nitrate contamination of groundwater is a common problem throughout intensive agriculture areas (non-point source pollution). Current processes (e.g. ion exchange and membrane separation) for nitrate removal have various disadvantages. The objective of this study was to evaluate electrochemical method such as electroreduction using bipolar ZVI packed bed electrolytic cell to remove nitrate from groundwater at field pilot. In addition ammonia stripping tower continuously removed up to 77.0% of ammonia. Bipolar ZVI packed bed electrolytic cell also removed E.coli. In the field pilot experiment for groundwater in 'I' city (average nitrate 30~35 mg N/L, pH 6.4), maximum 99.9% removal of nitrate was achieved in the applied 600 V.

Keywords

References

  1. 강구영 (2008) 생물학적 처리수 재이용을 위한 전기화학 기술의 적용, 대한환경공학회, 30(4), pp. 453-458
  2. 박정호 (2010) ZVI-ED system을 이용한 질산성 질소 및 대장균군 동시제거, 한양대학교 석사학위논문.
  3. 정주영 (2010) 영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거, 대한토목학회지, 31(2B), pp. 187-192
  4. 주경민 (2010) 입상활성탄 충진 전기분해 반응조를 이용한 지하수중의 질산성 질소 제거 연구, 한양대학교 석사학위논문.
  5. 이영준 (2010) 전기분해에 의한 질산성질소 제거, 전남대학교 석사학위논문.
  6. EPA (1996) National Primary Drinking Water Regulation, Office of Ground Water & Drinking Water
  7. Huang, Y.H. and Zhang, T.C. (2005) Enhancement of nitrate reduction in Fe0-packed columns by selected cations, Journal of Environment Engineering, 131(4), pp. 603-611 https://doi.org/10.1061/(ASCE)0733-9372(2005)131:4(603)
  8. Jeong, J.S., Kim, J.Y., Cho, M., Choi, W.Y. and Yoon, J.Y. (2007) Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode, Chemosphere, 67(4), pp. 652-659 https://doi.org/10.1016/j.chemosphere.2006.11.035
  9. Koparal, A.S. and Ogutveren, U.B. (2001) Removal of nitrate from water by electroreduction and electrocoagulation, Journal of Hazardous Materials, 89(1), pp. 83-94
  10. Lacasa, E., Canizares, P., Saez, C., Franandez, F.J. and Rodrigo, M.A. (2011) Removal of nitrates from groundwater by electrocoagulation, Chemical Engineering Journal, 171(3), pp. 1012-1017 https://doi.org/10.1016/j.cej.2011.04.053
  11. Mahvi, A.H., Ebrahinmi, S.J.A.D., Mesdaghinia, A., Gharibi, H. and Sowlat, M.H., (2011) Performance evaluation of a continuous bipolar electrocoagulation -electrooxidation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent, Journal of Hazardous Materials, 192(3), pp. 1267-1274 https://doi.org/10.1016/j.jhazmat.2011.06.041
  12. Peel, J.W., Reddy, K.J., Sullivan, B.P. and Bowen, J.M. (2003) Electrocatalytic reduction of nitrate in water, Water Research, 37(10), pp. 2512-2519 https://doi.org/10.1016/S0043-1354(03)00008-3
  13. Paidar, M., Bouzek, K. and Bergmann, H. (2002) Influence of cell construction on the electrochemical reduction of nitrate, Chemical Engineering Journal, 53(17), pp. 99-109
  14. Simon, G. and Romana, M.L. (2011) Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent, Process Safety and Environmental Protection, 89(1), pp. 61-66 https://doi.org/10.1016/j.psep.2010.11.001