• 제목/요약/키워드: aluminum-based alloys

검색결과 104건 처리시간 0.023초

금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험 (3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys)

  • 송용욱;김정준;박수원;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Effects of Corrosion Inhibitor on Corrosion of Al-based Alloys in Ethylene Glycol-Water Coolant Environment

  • Gwang-Soo Choi;Young-Man Kim;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.305-313
    • /
    • 2023
  • The objective of this study was to investigate the effectiveness of sodium dodecyl benzene sulfonate (SDBS) as a corrosion inhibitor on the pitting corrosion behavior of aluminum alloys used in electric vehicle battery cooling systems within a mixture of ethylene glycol and water (EG-W) coolant. Potentiodynamic polarization testing revealed unstable passive film formation on the aluminum alloys in the absence of SDBS. However, the addition of SDBS resulted in a robust passive film, enhancing the pitting corrosion resistance across all examined alloys. Pitting corrosion was predominantly observed near intermetallic compounds in the presence of Cl? ions, which was attributed to galvanic interactions. Among tested alloys, A1040 demonstrated superior resistance due to its lower areal fraction of precipitates and donor density. The incorporation of SDBS inhibitors mitigated the overall pitting corrosion process by hindering Cl? ion penetration. These findings suggest that SDBS can significantly improve pitting corrosion resistance in aluminum alloys employed in battery coolant environments.

고전도성 부품용 Al-Fe-Zn-Cu합금의 물성 및 주조성 (Properties and Casting Capabilities of Al-Fe-Zn-Cu Alloys for High Conductivity Parts)

  • 윤호섭;김정민;박준식;김기태;고세현
    • 한국주조공학회지
    • /
    • 제33권6호
    • /
    • pp.242-247
    • /
    • 2013
  • The most widely utilized commercial, aluminum-casting alloys are based on an aluminum-silicon system due to its excellent casting, and good mechanical, properties. Unfortunately, these Al-Si based alloys are inherently poor energy conductors; compared to pure aluminum, because of their high silicon content. This means that they are not suitable for applications demanding high eletrical or thermal conductivity. Therefore, efforts are currently being made to develop new, highly-conductive aluminum-casting alloys containing no silicon. In this research, a number of properties; including potential for castability, were investigated for a number of Al-Fe-Zn-Cu alloys with varying Cu content. As the copper content was increased, the tensile strength of Al-Fe-Zn-Cu alloy tended to increase gradually, while the electrical conductivity was slightly reduced. Fluidity was found to be lower in high-Cu alloys, and susceptibility to hot-cracking was generally high in all the alloys investigated.

Multi-feeder 3차원 적층제조 기반 조합실험을 활용한 알루미늄 합금탐색 (Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment)

  • 박수원;송용욱;여지윤;한송윤;최현주
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.255-261
    • /
    • 2023
  • Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

자동차 경량화를 위한 알루미늄 합금의 강변형 가공 및 고능률 용접기술에 관한 동향 (High Efficient Welding Technology of the Car Bodies)

  • 김환태;길상철
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.62-66
    • /
    • 2016
  • The trend of the fabrication technology of high strength, high toughness aluminum alloys by the severe plastic deformation(SPD) process and the welding technology of lightweight alloys in the automobile has been studied. The lightweight aluminum alloys can reduce vehicle weight, while stringently demanding the high quality and efficient welding techniques, to produce the best weldments. Among the production technologies, welding plays an important role in the fabrication of lightweight vehicle structure. This paper covers the scientometric analysis of the severe plastic deformations of lightweight alloys and the welding technology in the automobile which are based on the published research works in the 'HPT, ECAP and rolling', and 'welding technology of the automobile' obtained from Web of Science, and deals with the details of the background data of the HPT, ECAP, and rolling of lightweight alloys, and welding technology of the automobile technology.

6xxx계 알루미늄 합금의 경질 아노다이징 피막 형성 특성 연구 (Formation Characteristics of Hard Anodizing Films on 6xxx Aluminum Alloys)

  • 문상혁;문성모;임수근
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.203-210
    • /
    • 2019
  • In this work, anodizing behavior of 6xxx series aluminum alloys was studied under constant current density and constant voltage conditions in 20% sulfuric acid solution by V-t curves, I-t curves, thickness measurement, observations of surface appearance and cross-sectional observation of anodizing films. The film growth rate of the anodizing films on Al6063, Al6061 and Al6082 obtained at 20 V were $0.63{\mu}m/min$. $0.46{\mu}m/min$ and $0.38{\mu}m/min$, respectively. Time to the initiation of imperfections at the oxide/substrate interface under constant current condition was shortened and colors of anodizing films became darker with the amount of alloying elements in 6xxx series aluminum alloys. Based upon the experimental results obtained in this work, it is concluded that maximum anodizing film thickness without interfacial defects is reduced with increasing amount of alloying elements and brighter anodizing films can be obtained by decreasing amount of alloying elements in the aluminum alloys.

쌍롤 주조법에 의해 제조한 알루미늄 합금의 미세조직 (Microstructures of Twin Roll Cast Aluminum Alloys)

  • 박종우;김희수;백남익
    • 한국주조공학회지
    • /
    • 제16권2호
    • /
    • pp.149-157
    • /
    • 1996
  • Several aluminum based alloys were fabricated by a twin roll strip casting mill. As-cast microstructures and microsegregations of these aluminum alloys were investigated by means of optical microscope, scanning electron microscope and electron probe micro analysis. Clear distinction on microsegregation among the alloy systems was observed, that is, A1235 and A8011 alloys showed diffused segregation in the middle of the strip, while A3003 and A5086 alloys revealed a centerline segregation consisted of lamellar structure. Above center line segregation was resulted from enrichment of the alloying elements such as Mn, Fe, Cu, Si and eutictic reaction in central region of the alloy strip.

  • PDF

마그네슘합금의 레이저 절단가공 특성에 관한 연구 (A Study on the Laser Cutting Characteristics of Magnesium alloys)

  • 정한별;김형선
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.227-235
    • /
    • 2018
  • Studies on the laser cutting processing characteristics of magnesium alloys can be divided into three parts, comparing the cutting faces of magnesium alloy and aluminum alloy, observing the shape of the corner where straight lines meet, and observing the straight lines and arcs. First, there were no laser cutting conditions for magnesium alloys, so it was observed to cut magnesium alloy and aluminum alloy under the same processing conditions as aluminum alloy to shape and surface of the cut surface. Next, to observe the characteristics of the corner, we observed the shape of the corner according to the angle change of the part where the two lines meet, and finally we observed various angles to observe the characteristics of the part where the arc meets the line. Finally, laser cutting processing characteristics of magnesium alloys and aluminum alloys obtained based on the above study contents were summarized.

H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동 (Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution)

  • 우상현;손영진;이병우
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

Al-Zn-Fe-Si 합금의 물성 및 주조특성 (Properties and Casting Characteristics of Al-Zn-Fe-Si Alloys)

  • 윤호섭;김정민;박준식;김기태
    • 한국주조공학회지
    • /
    • 제33권1호
    • /
    • pp.8-12
    • /
    • 2013
  • Although aluminum-silicon based commercial casting alloys have been used in applications that demand high electrical or thermal conductivity, new aluminum casting alloys that possess higher conductivities are currently required for advanced applications. Therefore, there is much research into the development of new high conductivity aluminum casting alloys that contain lower amounts of or no silicon. In this research, the properties and casting characteristics of Al-Zn-Fe-Si alloys with various Fe and Si contents were investigated. Two types of AlFeSi phases were formed depending on the Fe and Si contents. As the silicon content increased, the tensile strength of the Al-Zn-Fe-Si alloy increased slightly, while the electrical conductivity decreased slightly. It was also observed that both the fluidity and hot cracking susceptibility of the investigated alloys were closely related to the formation of the AlFeSi phases.