• Title/Summary/Keyword: aluminium nitride

Search Result 36, Processing Time 0.032 seconds

A study for piezoelectric properties analysis of the AlN thin film by using PFM (PFM을 이용한 AlN 박막의 압전특성 분석에 관한 연구)

  • Lee, Jong-Taek;Kim, Se-Young;Shin, Hyeon-Chang;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.224-225
    • /
    • 2009
  • Aluminium nitride thin film was deposited on Au electrode and Si substrate by radio frequency sputtering system. X-ray diffraction (XRD) was utilized to identify the AlN phase, and Atomic Force Microscope (AFM) was used to obtain the images of surface morphology and roughness value of AlN thin film. The result of XRD and AFM measurement showed that the AlN thin film has strong c-axs orientation and smooth surface. In order to investigate piezoelectric response and polarization properties along to the direction of electric field, PFM (Piezoresponse Force Microscope) system was used, and the images of piezoelectric response due to switching of polarization was observed by PFM.

  • PDF

The Fabrication of a Ceramic Pressure Sensor Using Tantalum Nitride Thin-Films (질화탄탈박막을 이용한 세라믹 압력센서의 제작)

  • 정수용;최성규;이종춘;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.181-184
    • /
    • 2002
  • This paper describes fabrication and characteristics of ceramic pressure sensor for working at high temperature. The proposed pressure sensor consists of a Ta-N thin-film, patterned on a Wheatstone bridge configuration, sputter deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability The sensitivity is 1.097∼1.21 mV/V$.$kgf/$\textrm{cm}^2$ in the temperature range of 25∼200$^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Determination of Thermal Conductivity and Numerical Analysis of Al-Cr-N-O Composites Layer Formed by Hydro-thermal Process (수열합성된 Al-Cr-N-O계 도포층의 열전도 측정과 수학적 해석)

  • Kim, Ma-Ro;Yang, So-Eun;Lee, Jong-Jae;Kim, Byeong-Du;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.215-215
    • /
    • 2014
  • Composites layer of Al-Cr-Ni-O system was prepared on a steel plate by hydro-thermal process at $700^{\circ}C$ for 12 hours, which phase identification and thermal conductivity were determined. The composites layer consisted of aluminum nitride, alumina, chromium carbide and aluminium, which density was $3.7kg/m^3$. The thermal conductivity of the coating layer determined by thermal data acquisition system was about 98.0 W/m/ which depended on the AlN content. Numerical modelling of the heat transfer behavior of the coating layer was well agreement with the empirical data.

  • PDF

Preparation of AlN thin films on silicon by reactive RF magnetron sputtering (RF 마그네트론 스퍼터링을 이용한 Si 기판상의 AlN 박막의 제조)

  • 조찬섭;김형표
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2004
  • Aluminum nitride(AlN) thin films were deposited on silicon substrate by reactive RF magnetron sputtering without substrate heating. We investigated the dependence of some properties for AlN thin film on sputtering conditions such as working pressure, $N_2$ concentration and RF power. XRD, Ellipsometer and AES has been measured to find out structural properties and preferred orientation of AlN thin films. Deposition rate of AlN thin film was increased with an increase of RF power and decreased with an increase of $N_2$ concentration. AES in-depth measurements showed that stoichiometry of Aluminium and Nitrogen elements were not affected by $N_2$ concentration. It has shown that low working pressure, low $N_2$ concentration and high RF power should be maintained to deposit AlN thin film with a high degree of (0002) preferred orientation.

  • PDF

A CMOS Compatible Micromachined Microwave Power Sensor (CMOS 공정과 호환되는 마이크로머시닝 기술을 이용한 마이크로파 전력센서)

  • 이대성;이경일;황학인;이원호;전형우;김왕섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.439-442
    • /
    • 2002
  • We present in this Paper a microwave Power sensor fabricated by a standard CMOS process and a bulk micromachining process. The sensor consists of a CPW transmission line, a resistor as a healer, and thermocouple arrays. An input microwave heater, the resistor so that the temperature rises proportionally to the microwave power and tile thermocouple arrays convert it to an electrical signal. The sensor uses air bridged 8round of CPW realized by wire bonding to reduce tile device size and cost and to improve the thermal impedance. Al/poly-Si junctions are used for the thermocouples. Poly-Si is used for tile resister and Aluminium is for transmission line. The resistor and hot junctions of the thermocouples are placed on a low stress silicon nitride diaphragm to minimize a thermal loss. The fabricated device operates properly from 1㎼ to 100㎽\ulcorner of input power. The sensitivity was measured to be ,3.2~4.7 V/W.

  • PDF

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

The Study on the Characteristic of Mono Crystalline Silicon Solar Cell with Change of $O_2$ Injection during Drive-in Process and PSG Removal (단결정 실리콘 태양전지 도핑 확산 공정에서 주입되는 $O_2$ 가스와 PSG 유무에 따른 특성 변화)

  • Choi, Sung-Jin;Song, Hee-Eun;Yu, Gwon-Jong;Lee, Hi-Deok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.105-110
    • /
    • 2011
  • The doping procedure in crystalline silicon solar cell fabrication usually contains oxygen injection during drive-in process and removal of phosphorous silicate glass(PSG). In this paper, we studied the effect of oxygen injection and PSG on conversion efficiency of solar cell. The mono crystalline silicon wafers with $156{\times}156mm^2$, $200{\mu}m$, $0.5-3.0{\Omega}{\cdot}cm$ and p-type were used. After etching $7{\mu}m$ of the surface to form the pyramidal structure, the P(phosphorous) was injected into silicon wafer using diffusion furnace to make the emitter layer. After then, the silicon nitride was deposited by the PECVD with 80 nm thickness and 2.1 refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$880^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Solar cells with four different types were fabricated with/without oxygen injection and PSG removal. Solar cell that injected oxygen during the drive-in process and removed PSG after doping process showed the 17.9 % conversion efficiency which is best in this study. This solar cells showed $35.5mA/cm^2$ of the current density, 632 mV of the open circuit voltage and 79.5 % of the fill factor.

  • PDF

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells (후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성)

  • Kim, Hyun-Ho;Kim, Seong-Tak;Park, Sung-Eun;Song, Joo-Yong;Kim, Young-Do;Tark, Sung-Ju;Kwon, Soon-Woo;Yoon, Se-Wang;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

TFBAR Lattice and Balanced Type Filter Topologies (격자형 및 평형 구조를 가지는 박막공진 여파기에 관한 연구)

  • 김건욱;구명권;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1048-1053
    • /
    • 2002
  • In this paper, thin film bulk acoustic resonator(TFBAR) lattice and balanced type filter topologies are designed and fabricated. Aluminium nitride and platinum are used for piezoelectric material and top and bottom electrodes, respectively. Air-gap is placed to avoid silicon substrate loading effect and the performance of these lattice and balanced filters is compared with ladder filters. These filters have selectivity over 15 dB for lattice type and 30 dB for balanced type and reveal wider bandwidth of the ladder filters. For balanced type filters, minor tuning procedure is not needed and they are readily available for RF filter in wireless applications.

Preparation and characterization of AiN Thin Films by RF sputtering method (고주파 때려내기법에 의한 질화알루미늄 박막의 제작과 특성)

  • 정성훈;김영호;문동찬;김선태
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.706-712
    • /
    • 1997
  • AlN(Aluminium Nitride) thin films were prepared using by RF sputtering method on the Si(100) and Si(111) substrates as the parameters of the substrate temperature, RF power, sputtering duration and the $N_2$/Ar ratio and investigated by X-ray diffraction, IR spectrometry, n&k analyzer. For the Si(100) substrate, the AlN thin films of (101) orientation were obtained under the conditions of room temperature and the nitrogen of 60 vol.%. For the Si(111) substrate, the (002) AlN thin films were obtained under the nitrogen of 100 vol.%. In case of the thin film prepared in the condition of above 60 vol.% of the nitrogen, the average value of the surface roughness of the film was 151$\AA$. From the changes of the half widths of E$_1$[TO] phonon bands at the wavenumber of 680$cm^{-1}$ /, it were compared of the crystallinities of the films which were grown under the different conditions. The thicknesses of AlN films were decreased dramatically in the region of the nitrogen of 40~60 vol.%. Its due to the nitridation of the Al target surface and getting low of the sputtering yield by the $N_2$/Ar ratio being increased.

  • PDF