• Title/Summary/Keyword: alternative oxidase

Search Result 29, Processing Time 0.027 seconds

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity

  • Wan, Jin;Li, Yan;Chen, Daiwen;Yu, Bing;Zheng, Ping;Mao, Xiangbing;Yu, Jie;He, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.461-468
    • /
    • 2016
  • In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.

Development of the Blood Glucose Strip for the Detection of Glucose in Blood (혈당 측정용 스트립 개발에 관한 연구)

  • 송은영;김경아;이홍수;권두한;남효진;김희정;변시명;정태화
    • Biomedical Science Letters
    • /
    • v.4 no.2
    • /
    • pp.103-112
    • /
    • 1998
  • We have developed a simple and accurate strip test that measures the blood glucose level semiquantitatively by visual observation, or qualitatively by using UltraScan spectrocolorimeter. The strip has solid phase reagents, including glucose oxidase, peroxidase, chromogen, affixed to a plastic support. The strip test is capable of measuring blood glucose level in the range of 0∼800 mg/dl and generating the results within 2 to 3 minutes. Human blood specimens obtained from normal individuals and the diabetic patients were evaluated by the new blood glucose strip and by the kit supplied by other commercial products. The test results exhibit the correlation coefficient of 0.964. The new test strip is proven simple and accurate, and it offers an alternative to the commercially available glucose tests.

  • PDF

Characterization of an Extracytoplasmic Chaperone Spy in Protecting Salmonella against Reactive Oxygen/Nitrogen Species

  • Park, Yoon Mee;Lee, Hwa Jeong;Bang, Iel Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with ${\lambda}$ Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in $H_2O_2$ containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to $H_2O_2$. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.

A Review on Venom Enzymes Neutralizing Ability of Secondary Metabolites from Medicinal Plants

  • Singh, Pushpendra;Yasir, Mohammad;Hazarika, Risha;Sugunan, Sunisha;Shrivastava, Rahul
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • Objectives: Medicinal plants are vital sources of bioactive compounds that are useful for the treatment of patients with snake bites or are indirectly applicable for boosting the effects of conventional serum therapy. These plants are being used traditionally by local healers and tribes for the treatment of patients with snake bites and therefore can be used as an alternative against snake envenomation. Scientifically, using the secondary metabolites of plants to neutralize venom enzymes has an extra benefit of being based on traditional knowledge; also, the use of such metabolites for the treatment of patients with snake bites is cheaper and the treatment can be started sooner. Methods: All the available information on various secondary metabolites exhibiting venom neutralizing ability were collected via electronic search (using Google books, Pubmed, SciFinder, Scirus, Google Scholar, and Web of Science) and articles of peer-reviewed journals. Results:Recent interest in different plant has focused on isolating and identifying of different phytoconstituents that exhibit Phospholipase A2 activity and other venom enzyme neutralizing ability. In this support convincing evidence in experimental animal models are available. Conclusion: Secondary metabolites are naturally present, have no side effect, are stable for a long time, can be easily stored, and can neutralize a wide range of snake enzymes, such as phospholipase A2, hyaluronidase, protease, L-amino acid oxidase, 5'nucleotidase, etc. The current review presents a compilation of important plant secondary metabolites that are effective against snake venom due to enzyme neutralization.

The Antioxidative Effect of Eclipta prostrata L. Extract on Cultured NIH3T3 Fibroblasts Injured by Manganese-Induced Cytotoxicity

  • Lee, Sang-Hee;Jung, In-Ju;Jang, Hyesook
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Manganese (Mn) is used as main materials in various chemical processes of industry, but it suggested that Mn brings about its toxicant by fume or dust through respiratory system and skin barrier. Mn toxicant induces the loss of mental health and life quality by cerebrovascular and skin diseases. Nevertheless, it lefts much unknown on the mechanism and the effectively therapeutic methods about Mn toxicant. Therefore, this study was evaluated the cytotoxicity induced by manganese dioxide ($MnO_2$) in cultured NIH3T3 fibroblasts, and also, the correlation between $MnO_2$-induced cytotoxicity and oxidative stress was examined. While, the effect of Eclipta prostrata L. (EP) extract belong to Compositae was assessed against $MnO_2$-induced cytotoxicity in the view of antioxidative effect for searching the natural resources mitigating or preventing the $MnO_2$-induced cytotoxicity. In this study, $MnO_2$-induced cytotoxicity was revealed as mid-toxic by Borenfreud and Puerner's toxic criteria, and catalase (CAT), an antioxidant prevented $MnO_2$-induced cytotoxicity by the remarkable increase of cell viability in these cultures. While, in the protective effect of EP extract on $MnO_2$-induced cytotoxicity, EP extract effectively prevented the cytotoxicity induced by $MnO_2$ via antioxidative effects such as xanthine oxidase (XO) inhibitory ability and DPPH-radical scavenging ability. From the above results, EP extract showed the effective prevention against $MnO_2$-induced cytotoxicity correlated with oxidative stress by antioxidative effects. Conclusively, this study may be useful to research or development the alternatively therapeutic agent from natural resources like EP extract for the treatment of diseases resulted in oxidative stress.

LOXL1-AS1 Aggravates Myocardial Ischemia/Reperfusion Injury Through the miR-761/PTEN Axis

  • Wenhua He;Lili Duan;Li Zhang
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.387-403
    • /
    • 2023
  • Background and Objectives: Myocardial ischemia and reperfusion injury (MIRI) has high morbidity and mortality worldwide. We aimed to explore the role of long noncoding RNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in cardiomyocyte pyroptosis. Methods: Hypoxia/reoxygenation (H/R) injury was constructed in human cardiomyocyte (HCM). The level of LOXL1-AS1, miR-761, phosphatase and tensin homolog (PTEN) and pyroptosis-related proteins was monitored by quantitative real-time polymerase chain reaction or western blot. Flow cytometry examined the pyroptosis level. Lactate dehydrogenase (LDH), creatine kinase-MB and cardiac troponin I levels were detected by test kits. Enzyme-linked immunosorbent assay measured the release of inflammatory cytokines. Dual-luciferase assay validated the binding relationship among LOXL1-AS1, miR-761, and PTEN. Finally, ischemia/reperfusion (I/R) animal model was constructed. Hematoxylin and eosin staining assessed morphological changes of myocardial tissue. NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and casepase-1 expression was determined by immunohistochemistry. Results: After H/R treatment, LOXL1-AS1 and PTEN were highly expressed but miR-761 level was suppressed. LOXL1-AS1 inhibition or miR-761 overexpression increased cell viability, blocked the release of LDH and inflammatory cytokines (interleukin [IL]-1β, IL-18), inhibited pyroptosis level, and downregulated pyroptosis-related proteins (ASC, cleaved caspase-1, gasdermin D-N, NLRP3, IL-1β, and IL-18) levels in HCMs. LOXL1-AS1 sponged miR-761 to up-regulate PTEN. Knockdown of miR-761 reversed the effect of LOXL1-AS1 down regulation on H/R induced HCM pyroptosis. LOXL1-AS1 aggravated the MIRI by regulating miR-761/PTEN axis in vivo. Conclusions: LOXL1-AS1 targeted miR-761 to regulate PTEN expression, then enhance cardiomyocyte pyroptosis, providing a new alternative target for the treatment of MIRI.

Physiological Activities of Gymnopilus spectabilis Mycelium Extract and Supernatant of its Broth (갈황색 미치광이버섯 균사체 추출물 및 배양액의 생리활성)

  • Son, Jung-A;Seok, Soon-Ja;Lee, Kyoung-Jin;Lee, Kang-Hyo;Park, Jeong-Sik;Park, Ki-Moon
    • The Korean Journal of Mycology
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • This study was carried out to investigate the physiological activities of the ethanol extract from Gymnopilus spectabilis mycelium (EGM) and of the supernatant obtained from fermentation broth (SGB). The contents of polysaccharides, phenol compounds and total ${\beta}-glucans$ of EGM were found to be 80.14%, 3.5 mg/ml and 5.91%, respectively and those for SGB were 78.68%, 3.32 mg/ml and 3.28%, respectively. Both EGM and SGB exhibited dose-dependent nitrate-scavenging abilities at pH 1.2. In addition, both EGM and SGB on the autoxidation rate of the linoleic acid demonstrated powerful antioxidant activities at 1 mg/ml level. With respect to fibrolytic activity, EGM showed 1,180 unit/g, which was the same activity as streptokinase, while SGB was 1,011 unit/g. The angiotensin converting enzyme inhibition activity of EMG determined by both the normal and pretreatment methods were estimated to be 8.2% and 10.2%, respectively. However, SGB showed no corresponding activity. The growth inhibitory effects of EGM on AGS, A549, HeLa and NCTC cells were over 58.88%, respectively. And the growth inhibitory effects of the SGB on HeLa and NCTC cells were 44.92 and 76.76%, respectively. Also, EGM and SGB activated the components of the alternative complement pathway from 51 and 62% at the concentration of 100 mg/ml, The xanthine oxidase inhibition activities of EGM and SGB (1 mg/ml) were 9.53 and 16.92%, respectively.

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.