• Title/Summary/Keyword: almost periodicity

Search Result 22, Processing Time 0.017 seconds

ALMOST PERIODIC SOLUTIONS OF PERIODIC SECOND ORDER LINEAR EVOLUTION EQUATIONS

  • Nguyen, Huu Tri;Bui, Xuan Dieu;Vu, Trong Luong;Nguyen, Van Minh
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.223-240
    • /
    • 2020
  • The paper is concerned with periodic linear evolution equations of the form x"(t) = A(t)x(t)+f(t), where A(t) is a family of (unbounded) linear operators in a Banach space X, strongly and periodically depending on t, f is an almost (or asymptotic) almost periodic function. We study conditions for this equation to have almost periodic solutions on ℝ as well as to have asymptotic almost periodic solutions on ℝ+. We convert the second order equation under consideration into a first order equation to use the spectral theory of functions as well as recent methods of study. We obtain new conditions that are stated in terms of the spectrum of the monodromy operator associated with the first order equation and the frequencies of the forcing term f.

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS

  • Song, Hyungsoo
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.161-167
    • /
    • 2003
  • The purpose of this paper is to study and characterize the notions of characteristic 0 and weakly almost periodicity in flows. In particular, we give sufficient conditions for the weakly almost periodic flow to be almost periodic.

  • PDF

PERIODICITY ON CANTOR SETS

  • Lee, Joo-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.595-601
    • /
    • 1998
  • In this paper we construct a homeomorphism on a Cantor set which is nearly periodic such that h(a) = b for given a, b $\in$ D$_{p}$. We also give an example which is not almost periodic and we discuss when a homeomorphism on a Cantor set is periodic.c.

  • PDF

NONWANDERING POINTS OF A MAP ON THE CIRCLE

  • Bae, Jong-Sook;Cho, Seong-Hoon;Min, Kyung-Jin;Yang, Seung-Kab
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1115-1122
    • /
    • 1996
  • In study of the dynamics of a map f from a topological space X to itself, a central role is played by the various recursive properties of the points of X. One such property is periodicity. A weaker property is that of being nonwandering. Intermediate recursive properties include almost periodicity and recurrence.

  • PDF

EXISTENCE AND STABILITY OF ALMOST PERIODIC SOLUTIONS FOR A CLASS OF GENERALIZED HOPFIELD NEURAL NETWORKS WITH TIME-VARYING NEUTRAL DELAYS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1051-1065
    • /
    • 2012
  • In this paper, the global stability and almost periodicity are investigated for generalized Hopfield neural networks with time-varying neutral delays. Some sufficient conditions are obtained for the existence and globally exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results. Finally, an example is given to demonstrate the effectiveness of our results.

Some Notes on the Fourier Series of an Almost Periodic Weakly Stationary Process

  • You, Hi-Se
    • Journal of the Korean Statistical Society
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 1974
  • In my former paper [3] I defined an almost periodicity of weakly sationary random processes (a.p.w.s.p.) and presented some basic results of it. In this paper I shall present some notes on the Fourier series of an a.p.w.s.p., resulting from [3]. All the conditions at the introduction of [3] are assumed to hold without repreating them here. The essential facts are as follows : The weakly stationary process $X(t,\omega), t\in(-\infty,\infty), \omega\in\Omega$, defined on a probability space $(\Omega,a,P)$, has a spectral representation $$X(t,\omega)=\int_{-\infty}^{infty}{e^{it\lambda\xi}(d\lambda,\omega)},$$ where $\xi(\lambda)$ is a random measure. Then, the continuous covariance $\rho(\mu) = E(X(t+u) X(t))$ has the form $$\rho(u)=\int_{-\infty}^{infty}{e^{iu\lambda}F(d\lambda)},$$ $E$\mid$\xi(\lambda+0)-\xi(\lambda-0)$\mid$^2 = F(\lambda+0) - F(\lambda-0) \lambda\in(-\infty,\infty)$, assumimg that $\rho(u)$ is a uniformly almost periodic function.

  • PDF