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WEAKLY ALMOST PERIODICITY FOR
ASYMPTOTIC NONEXPANSIVE SEMIGROUPS

SANG SIK SHIN AND SuNG KaGg CHANG

I. Introduction

Let C be a nonempty closed bounded convex subset of a real Banach
space X'. Then a one-parameter family S = {T(¢): ¢ > 0} of mappings
from C into itself is said to be a strongly continuous asymptotically
nonexpansive semigroup on C if  satisfies the following conditions;

(1) T(0)a = x(the identity on C') :
(i1) T(t+ s)x = T(t)T(s)z for all 7 in C and t,s 20
(iii) for each ¢, there exists k(¢) such that | T(t)e — T(t)y ||<
(L+R) || @ —y |l for o,y € C with lim,_. k(¢) = 0 and

(iv) for each z in C, the mapping T(#)x is continuous for t € [0, 00).

Note that if £(t) = 0 for all t > 0 then 3 = {T(¢) : t > 0} is a
(continuous) nonexpansive semigroup on X. We set F(3)y={zeC:
T(t)e = x for all £ > 0}, and wy(u) = {y ¢ X:30 < ¢, - oo such
that (u(ty))n weakly converges to y}. We let y(u) = {u{t):t > 0} and
w-cly(u) denotes the weak closure of y(u).

For J € {R.R*}, we let C}(J,X) denote the usual Banach space
of bounded continuous functions from J into X under the supremum
norm, while Cy(J, X) denotes the subspace consisting of those f €
Cy(J, X)) which vanish at infinity on J. Similarly, Cy(.J, X,.) will denote
the space of all bounded, weakly continuous functions from J into X
endowed with the topology of uniform convergence when X has its
weak topology, and Cy(J, X,.) denotes the sul space of functions which
vanish at infinity with respect to the weak topology of X. Further,
given a function f:.JJ — X and w € J, the w-translate fo of fis
defined by f.(t) = f(t+w), t € J, and H(fi={f.:w e J} denote

the set of all translates of f.
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DEFINITION 1.1. (a) A function f € Cy(R,X) [respectively, f €
Cy(RT, X)) is said to be almost periodic (a.p.) [respectively, asymptot-
ically almost periodic (a.a.p.)] if H(f) is relatively compact in Cy( R, X)
[respectively, Cp( R, X)].[Fréchet[3]].

(b) A function f € Cy(R, Xw) [respectively, f € Co( R, X)) is said
to be weakly almost periodic (w.a.p.) [respectively, weakly asymptoti-
cally almost periodic (w.a.a.p.)] if z*of is almost periodic [respectively,
asymptotically almost periodic| for all z* € X™*.

(¢c) For J € {R,R*}, afunction f € Cy(J,X) is said to be Eberlein-
weakly almost periodic (E.-w.a.p.) if H(f) is weakly relatively compact
in Cy(J, X).[Eberlein[2]].

The spaces of X-valued functions defined in (a)-(c) of definition
1.1 will be denoted respectively by (a) AP(R,X) [AAP(R*,X)],(b)
WAP(R,X) [WAAP(R*, X)],and (c)W(J,X),J € {R,R"}. We also
let Wo(J, X) denote subspace of W(.J,X) consisting of those ¢ €
W(R*,X) for which the zero function belongs to w — clH(y). The
following are well known.

THEOREM 1.2. [7][8] Let u € Cy(R*,X). Then the following are
equivalent:

(i) u € W(R*,X)

(i) there exist unique functions g € AP(R,X) and ¢ € Wo(R*,X)
such that « = g |g+ +¢.

(iii) given any sequences ((tm,a%))m in RT x B% and (wgp). in
RY, lim, limy, < w(tm + wy), 25 >= limp lim, < u(tn + wa), a5 >
whenever both iterated limits exist.

I1. Almost-orbits of asymptotically nonexpansive semigroup

Bruck[2] introduced the notion of an almost-orbit of a nonexpan-
sive mapping. Miyadera and Kobayashi[5] extended the notion of to
the case of a nonexpansive semigroup on C and established the weak
and strong converges of such an almost-orbit. Recently Takahashi and
Zhang [11] established the weak convergence of an alinost-orbit of an
asymptotically nonexpansive semigroup on C in a Banach space.
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DEFINITION 2.1. [11]. A continuous function u: Rt — C is called
an almost — orbit of & = {T'(t) |t > 0} if

lim sup || w(t 4+ k) — T(h)u(t) ||= 0. (2.1)
t—s00 k>0

Throughout the rest of this paper, we assume that the semigroup < =
{T(t):t > 0} is asymptotically nonexpansive semigroup on C.

The following lemmas have been proved by Takahashi and Zhang[11]
and T.H.Kim[4].

LEMMA 2.2, [4][11]. Suppose u,v: R* — C are almost-orbits of
S = {T(t):t > 0). |

Then (a) || u(t) — v(t) || converges as t -+ oo, (b) for every h > 0,
|| w(t+h)—wu(t) || converges ast — oo, (c) z € F, || u(t)—z || converges
ast -— oo.

LEMMA 2.3. [11]. Let X be uniformly convex and let uw: Rt — C

be an almost-orbit of & = {T(t):t > 0}. Then F(J) # 0 if and only if
{u(t):t > ¢4} is bounded for some ty > 0.

Now we prove the following lemma.

LEMMA 2.4, If w: R* — (' is an almost-orbit of & = {T(t):t > 0},
then u is uniformly continuous on [0, o0).

Proof. We put M = sup,(1+k(t)). Let ¢(t) = supysg || u(t+s)—
T(s)u(t)]]. Let € > 0 be arbitrary. Then we can choose ty = to(e) >0
such that ¢(t) < £ for all + > #,. We set IV = min{3, 357 }. Then
K > 0. Since u is uniformly continuous on (0,20 + 1], there exists
6 =6(¢) > 0with & < 1such that || u(#')—u(+) |[< K for t,#' € [0, to+1]
with | ¢ — ' |< é.

Now, let 0 < ¢' —¢ < 4. If t € [0,0] then #' € [0,¢) + 1] and so
| w(t') —u(t) |[< K < e Ift > ty, then

| (") —w(t) |<Y w(t') — T(t — to)u(t' —t +to) |
+ | T(t — to)ul(t' —t + to) — T(t — to)u(to) ||
+ T T(t = to)ulte) — u(t) ||
<ot —t 4 to) + (14 k(t —t0)) | u(t’ =t +to) — ulto) || +0(¢)

€ € €
<= ST —
SytMagpts ==
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Consequently, || u(t') — u(t) ||< € for t,#' € [0,00) with | t — ¢ |< 6.
That is, u is uniformly continuous on [0, 00).

THEOREM 2.5. [6][7][8]. Assume that {T(t):t > 0} is a strongly
continuous semigroup of operators on a weakly closed subset C of X,
and let u : Rt — C be an almost-orbit of {T(t):t > 0} such that

(*) T(h) lw-ciy(u): w — cly(u) — X is weak-to-weak continuous for
each h € Rt. Then v € W(R™,X) if and only if there exist unique
elements y € wy(u) and p € Wo(R™',X) such that

() u=TC)y+v

(i) T(-)y is almost periodic.

ITI. Weakly alimost periodicity for asymptotically nonex-
pansive semigroups.

We can now formulate the main result of this paper. The result is
generalizations of Ruess and Summer [6]. We put d = sup,ec || 2 || -

THEOREM 3.1. Assume that X is uniformly convex, and let u: RY
— C' be an almost-orbit of & = {T'(t) : t > 0} such that

(a) imy—oo || u(t + k) — w(t) ||= p(h) exists uniformly in h € R*
and

(b) T(h)jw——cty(n): w — cly(u) — X is weak to weak continuous for
every h > 0.

Then u 1s weakly almost periodic in the sense of Eberlein, and there
exist unique elements y € wy(u) and ¢ € Wo(R*, X) such that

(Du=T()y+e

(ii)T(-)y is almost periodic.

The condition (a) is called asymptotically isometic. The follow-
ing proposition give the sufficient condition for u to be asymptotically
isometic.

PROPOSITION 3.2. Let w: Rt — C be an almost-orbit of § =
{T(t) : t > 0}. Assume that u satisfies one of the following condi-
tions:

(1) There is a sequence (t,), such that t, — oo and lim,_ ||
u(tn + h) — u(t,) || exists uniformly in h > 0
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(2) There is a sequence (tn)n such that t, — oo and {u(tn)} is
strongly convergent.
Then (*) lim¢—.oo || u(t+ ) —u(t) ||= p(h) exists uniformly in k > 0.

Proof. Let € > 0 be arbitrary. From Lemma 2.2(b), since lims—q ||
u(s + k) —u(s) ||= p(h) for every h > 0, there exists M = M(e, h) > 0
such that ] .

plh) = 2 <lluls -+ R) = u(s) < p(h) + 1

for every s > M and & > 0. Let ¢(t) = sup,s || u(t 4 s) — T(s)u(t) ||.
Assume that (1) holds. Then there is an integer N = N(€) such that
$(t) < ¢ and k(t) < g5 for every t >ty and || u(ty + h) — u(tn) ||<
p(h) + -;— for every h > 0.

Now we have for every t > tx, s > max(ty, M) and h > 0,

p(h) -

<Nult+s+h) —ult+9)]

SWult+s+h)—=T(s)u(t+h) || + || T(sy(t +h) — T(s)u(t) ||
1 T(shult) = ult 4 5) |

SO(t+ k) + (14 k(o)) [ ult 4+ h) — u(t) || +6(2)

€ € €
- t+h) — ult — - 3d 4 -

<4+Hu(+1) u()”+8d +4
e

=-4—+ || w(t + h) — u(t) Il -

Hence for every t > 2t we obtain,

plh) —e
<l ult+h)—u(t)]
< sup |l u(ty +w+ h) — u(ty +w) ||

w>ty
< sup | u(ty +w+h) —T(w)u(ty + k) ||
w2ty
+ sup || T(w)ultny + h) = T()u(tn) |
w>ty

+ sup || T(w)u(ty) — u(tn +20) ||]

wth
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<o(tn + h)+ || ultn + k) — u(tn) ||
+ sup k(w) || w(tn + k) —u(tn) || +o(tn)

w>t\

<-§-+ph)+é—c—l 7d+—-—e+p(h)

This shows that the equality (*) holds.
Next, assume that (2) holds. Then

sup || w(ts +h) = u(tn) | = || w(tm + ) = u(tem) |
h>0

<sup || ultn +h) = w(tm +h) + u(tm) — u(ta) ||
h>0

<sup{l) ultn + ) = T(ju(ta) || + | T(h)u(ta) = T(R)eltm) |

+ | T(h)u(tm) — ultm + k) || + || wltm) — u(tn) ||}
<¢(tn) + d(tm) + [2 + 'lv(h)] “ w(tm) — u(tn) H"’ 0
as m,n — 0o.
Therefore (1) holds and hence the equality (*) is satisfied.
We get the following lemma by Bruck’s inequality.

LEMMA 3.3. Suppose C is a bounded closed convex subset of a uni-
formly convex Banach space X. Then there exists a strictly increasing
continuous convex function v: [0, 00) — [0,00) with v(0) = 0 such that

T3 ) = S ATl
t=1 =1
<+ 1)y (e 1ol -

1
1+ k(2)

”TWE—TWWM)

forany t > 0 and any n > 1, any Ay, , Ap, > 0 with Z?:l X; =1 and
any 1, ,Tn € C.
Proof. Let S(t)z = 1—4—_-1—(-t—)T(t)T for € C and t > 0 then {S(¢) |

t > 0} is nonexpansive semigroups on C into C. So applying Bruck’s
inequality [5] for {S(#) |t > 0}, we obtain the required conclusion.
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THE PROOF OF THEOREM 3.1. Our proof emploies the method of
Ruess and Summer [[6] Theorem 1.4]. We would first show that u is
weakly almost periodic in the sense of Eberlein. For this, according
to characterization of vector valued weakly almost periodic function in
the sense of Eberlein [Theorem 1.2], given sequences ((wn)n, (tm)m) C
R* x R, and (a},)m C Bx- = {2* € X*:|| 2* ||[< 1} such that the
limits

o = hmlim < (u(tm +wn),2),) > and

n m

/)) = 11111 hm < U( bm + Ldn) ‘m >

m n

both exist, it will suffice to show that a = 3.

Case I:(wp)n is hounded.

From Lemma 2.4, u is uniformly continuous. The proof is similiar
to the case 1 in [[6] Theorem 1.4].

Case 2:(wn)n 1s unhounded.

We may assume that 0 < w,, T oc. Here, we note that < T(tm)u{wn),
zy, > is bounded for all n € N. By going over to subsequences
and using a diagonalization argument., we can assume that lim,, <
T(tm u(wy), x5, > exists for all n € N, and also lim, < T(t,)u(ws),
xy, > exists for all '»n € N. Furthermore, we can also assume that
(#(wn))n converges weakly to some 23 € C. Then we easily check that

a =limlim < T(t )u(wn),al, > and
n m

F=lmlim < T(tm )u{wn), 5 > .
m T
First we consider that (#,,),, is bounded. wo can thus assume that
tm — to € R. By Banach-Alogue Theorem, given (2¥,), in By,
there exist 235 € Bx. and a subsequence (z}, )m, of (2},)m which is
w*-convergent to xj5. For ¢ > 0, by (b), we chcose ng € N so that

|< T(h)ulwn) = T(I)ay, a5 >|< € for n > ny and h > 0.
Now 3 = limp, lim,, < T(tm )u(wn), 2%, >=lim,, < T(tm )z, 8, >.

1
Again setting a,, = lim,,, < T(tnm, )u u{wy i, x5, > forn € N, if
n > ny we then have that
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| Qay — v} l:hm |< T(tm.-)u(wn) - T(tm;)mlwv:(n.- >|

= |< T(to)u(wn) - T(to)&?l, :136 >1< €.

Thus we have a = 3.

Secondly we consider that (¢m)m is unbounded. We can assume
that 0 < t,, T co. Since (u(wn))n is weakly convergent to z; € C,
z1 = ow; cleo{u(wr):k > n}. We are going to show that for any
€ > 0 there exist ny = ny(e) and mg = my(€) in N such that

(1) | an — a |< e for all n > ng

(2) y = 3 Mju(w;) € cofu(wr) | I > ny} with ||y — 21 ||< 37 and

3) || T(tm)y — 3 AT (tm)u(w;) ||< e for any A; > 0 with - A; >0
and m > my.

In fact, (1) and (2) are obvious. For (3), Above € > 0, let ¥(-) and
k(-) be functions stated in Lemma 3.3. Then we can choose ¢ > 0 so
that v71(§) < =5. Since lim,, k() = 0, there exists mo € N such

M-
that k(t,,) < §/d for all m > my. By the fact that lim, .o || u(t+h) -
u(t) ||= p(h) exists uniformly in h > 0O,there exists ny = na(é) € N
such that

¢
Il u(w:) = wlw;) | =p(lwi —wj 1) 1< ¢

for ¢,7 > ns.
Hence

| w(wi) — w(w;) || = || wlwi + tm) — ww; +tm) ||
b
Solwi —w; )+ 5= wlwi +tm) = u(w; +tm) |l
)

<-.
4

Moreover, u is an almost-orbit of & = {T'(¢):¢ > 0}, there exists n3 =
n3(6) € N such that

» o
sup H U(wl‘ +tm) — T(tm )u(wi) H< Z

for all : > nj.
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Put ny = max{ns,n3}. If m > mo and 7,7 > ny, then

, 1
| uw:) - u(w;) || — 1+ k(¢ ) | T(tm)u(w:i) = T(tm Ju(w;) |
S wwi) = w(w)) || = | wlwi + ) = w(w; +tw) ||

+ || w(wi +tm) — T(tm)u(wi) || + || w(w; -+ tm) = T(tm )u(w;) ||
¥ k() || w(ws) — wlw;) 1< 6.

Thus by Lemma 3.3, || T(tn) > Mju(w;) — > AT (tm )u(w;) ||< € for
any A; > 0 with Y A; = 1. This proves (3).

We have from (2),

(4) 1| T(tm)y = T(tm)er 1€ (1 K] |y - 21 ]1< € for m € N,
From (3) and (4), we have

|< 3TN T(tm)ulw;) = T(tm)ar, 25, >
<1< DN T W ulw;) = Tltm)y, on, >
-+ |< T nl)?j ( m)ll lm >;
<UD XN Tmu(w;) = Tty | + | Titm )y = Tltm)z |

<e+ € = 2e for m > myg.

This means that
| Zx\jaj — B |< 2e.
We now conclude that from (1) and (5),

la =B <la=> XNa;|+|Y Aa; -3
SZ,\]‘|O~CYJ'I+26

< e+ 2¢ = 3e.

The fact that v decomposed as specified in Theorem 3.1 follows from
[ Theorem 2.5 ].

The proof is thus complete.

From Theorem 3.1 we obtain the following corollary.



426 Sang Sik Shin and Sung Kag Chang

COROLLARY. [6]. Assume that X is uniformly convex, and let
u: R* — C be an almost-orbit of a nonexpansive semigroup ¥ = {T(t) :
t > 0} such that

(a) limeoo || u(t + h) — u(t) ||= p(h) exists uniformly in h € R*.

Then u is weakly almost periodic in the sense of Eberlein, and there
exist unique elements y € wy(u) and p € Wo(R*, X) such that

Du=T()y+e

(ii)T(-)y is almost periodic.

A function u : R — X is said to be weakly almost convergent to
ye X if
1 T
w— lim — u(t + h)dt =y uniformly in kA > 0.
T—oo T 0
It is well known that if u is weakly almost convergen: to y € X and if
w — limy_oo(u(t + h) — u(t)) = 0, then u(t) converges weakly to y [5].

THEOREM 3.4. Assume that X is a uniformly convex, and let u: R*
— C be an almost-orbit of I = {T(t) : t > 0} such that

T(h) | w—cly(u) : w—cly(u) = X

is weak-to-weak continuous for each h > 0.

If u € W(R',X) and if w — lim;_.oo(u(t + k) — u(t)) = 0. Then
u€e WAAP(R', X).

Proof. Sinceu € W(RY, X ), u(t) is weakly almost convergent to y €
X. So u(t) converges weakly toy € X. i.e. {y} = wyw(u). From the fact
that X is uniformly convex and & = {T(¢) : t > 0} is asymptotically
nonexpansive semigroup on a closed bounded convex subset C of X,
{y} = ww(u) C F(S). Now from Theorem 2.5, v = T(-)y + ¢ where
y € wy(u) and ¢ € Wo(R',X). This implies that ((¢) converges
weakly to 0, i.e. ¢ € Co(R™, X,,). Therefore u € WAAP(RY, X) from
[lemma 2.7 [9]].

REMARK. Condition w — limy—oo(u(t + k) — u(t)) = 0 could be
replaced by

w — limy oo (T(t + h)x — T(t)r) = 0 for each x € C. In fact, w —
lim;_,oo(T(t+h)z—T(t)z) = 0 implies 1w —limy_ oo (u(? + k) —u(t)) = 0.
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