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ON THE QUALITATIVE BEHAVIOR OF DISCRETE
VOLTERRA EQUATIONS
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and Namjip Koo****

Abstract. We investigate the boundedness and asymptotic al-
most periodicity of solutions for discrete Volterra equations.

1. Introduction

Consider the nonlinear Volterra integral equation

x(t) = f(t)−
∫ t

0
A(t− s)G(s, x(s))ds (1.1)

where A(t) is the appropriate 2 × 2 matrix and x, f(t) and G(t, x) are
the appropriate two-dimensional column vectors. More generally, we
also consider the system of equations

x1(t) = f1(t)−
∫ t

0
a1(t− s)g1(s, x1(s))ds

−
∫ t

0
a2(t− s)g2(s, x2(s))ds,

x2(t) = f2(t)−
∫ t

0
a2(t− s)g1(s, x1(s))ds

−
∫ t

0
a1(t− s)g2(s, x2(s))ds.

(1.2)
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Equations of the form (1.1) arise from the following diffusion problem:
ut = uyy, y > 0, t > 0,

lim
y→∞u(t, y) = 0, t > 0,

uy(t, 0) = g(t, u(t, 0)), t > 0.

(1.3)

System (1.2) arises from a similar diffusion problem on a finite interval:
ut = uyy, 0 < y < L, t > 0,

uy(t, 0) = g1(t, u(t, 0)), t > 0,

uy(t, L) = −g2(t, u(t, L)), t > 0,

(1.4)

where L > 0.
The study of (1.3) and (1.4) was inspired by a theory of superfluidity

of liquid helium(see [7] and [8]).
Burton and Furumochi [1] studied the existence of periodic solutions

of

x(t) = a(t)−
∫ t

0
D(t, s, x(s))ds (1.5)

and

x(t) = p(t)−
∫ t

−∞
P (t, s, x(s))ds (1.6)

by using techniques on limiting equations, Liapunov functions, the the-
ory of minimal solutions, and contraction mappings. Also, they studied
the existence of almost periodic and asymptotically almost periodic so-
lutions of the integral equation (1.5) and (1.6) in [2]. Furthermore,
corresponding to Volterra equations (1.5) and (1.6), Furumochi [5] in-
vestigated the existence of periodic solutions of the difference equations

x(n + 1) = a(n)−
n∑

k=0

D(n, k, x(k)) (1.7)

and

x(n + 1) = p(n)−
n∑

k=−∞
P (n, k, x(k)) (1.8)

which is the discrete analogue of equations (1.5) and (1.6), respectively.
In this paper we investigate some qualitative properties in (1.7) and

(1.8), that is, the boundedness and asymptotic almost periodicity.
For the asymptotic property of Volterra difference systems, see [3]

and [4].
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2. Main results

We denote by Z,Z+,Z−, respectively, the set of integers, the set of
nonnegative integers, and the set of nonpositive integers. Let Rd denote
d-dimensional Euclidean space with the Euclidean norm | · |.

Definition 2.1. A continuous function f : Z×Rd → Rd is said to be
almost periodic in n ∈ Z uniformly for x ∈ Rd if for every ε > 0 and every
compact set K ⊂ Rd, there corresponds an integer N = N(ε,K) > 0
such that among N consecutive integers there is one, here denoted p,
such that

|f(n + p, x)− f(n, x)| < ε

for all n ∈ Z uniformly for x ∈ Rn.

Definition 2.2. A function φ : Z → Rd is called asymptotically
almost periodic if it is a sum of an almost periodic function φ1, and
a function φ2 defined on Z which tends to zero as n → ∞, that is,
φ(n) = φ1(n) + φ2(n), n ∈ Z.

Note that the decomposition φ = φ1 + φ2 in Definition 2.2 is unique
[9].

Lemma 2.3. [9] A function φ : Z → Rd is asymptotically almost

periodic if and if for any integer sequence (τ
′
k) with τ

′
k →∞ as k →∞,

there exists a subsequence (τk) ⊂ (τ
′
k) for which φ(n + τk) converges

uniformly for n ∈ Z as k →∞.

We consider the systems of Volterra difference equations

x(n + 1) = a(n)−
n∑

k=0

D(n, k, x(k)), n ∈ Z+ (2.1)

and

x(n + 1) = p(n)−
n∑

k=−∞
P (n, k, x(k)), n ∈ Z, (2.2)

where

a : Z+ → Rd,

p : Z→ Rd,

D : ∆+ × Rd → Rd,

P : ∆× Rd → Rd,
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and where

∆+ = {(n, k) : 0 ≤ k ≤ n, n, k ∈ Z+},
∆ = {(n, k) : k ≤ n, n, k ∈ Z},

and D(n, k, x), P (n, k, x) are continuous in x for any fixed (n, k). More-
over, we assume that

q(n) = a(n)− p(n) → 0 as n →∞ (2.3)
and p(n) is almost periodic,

Q(n, k, x) = D(n, k, x)− P (n, k, x), (2.4)

P (n, k, x) is almost periodic in n ∈ Z uniformly for (k, x) ∈ Z×Rd, and
for any J > 0 there are functions

PJ : ∆ → R+ = [0,∞)

and

QJ : ∆+ → R+

such that

PJ(n, k) is almost periodic in n,

|P (n, k, x)| ≤ PJ(n, k) if (n, k, x) ∈ ∆×XJ , XJ = {x ∈ Rd : |X| ≤ J},
|Q(n, k, x)| ≤ QJ(n, k) if (n, k, x) ∈ ∆+ ×XJ ,

n∑

k=−∞
PJ(n + ν, k) → 0 uniformly for n ∈ Z as ν →∞ (2.5)

and
n∑

k=0

QJ(n, k) → 0 as n →∞. (2.6)

In view of almost periodicity of p and P , for any sequence (n
′
k) ∈ Z

with n
′
k → ∞ as k → ∞, there exists a subsequence (nk) ⊂ (n

′
k) such

that

p(n + nk) → e(n) (2.7)

and

P (n + nk, k, x) → E(n, k, x) (2.8)

uniformly on Z ×K for any compact set K ⊂ Rd , e(n) and E(n, k, x)
are also almost periodic in n and almost periodic in n uniformly for
(k, x) ∈ Z× Rd, respectively. Thus we can define the hull:
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Definition 2.4. H(p, P ) = {(e,E): (2.7) and (2.8) hold for some
sequence

(nk) ⊂ Z with nk →∞ as k →∞}. (2.9)

Definition 2.5. If (e, E) ∈ H(p, P ), then the equation

x(n + 1) = e(n)−
n∑

k=−∞
E(n, k, x(k)), n ∈ Z (2.10)

is called the limiting equation of (2.2).

First, we obtain the existence of bounded solutions of Eq. (2.1).

Theorem 2.6. For Eq. (2.1), we assume that for any J > 0,

|D(n, k, x)| ≤ DJ(n, k), n, k ∈ Z+, x ∈ XJ , (2.11)

where DJ : Z× Z→ R+,
n∑

k=0

DJ(n, k) is bounded on Z, (2.12)

|D(n, k, x)−D(n, k, y)| ≤ LJ(n, k)|x− y|, n, k ∈ Z+, x, y ∈ XJ , (2.13)

where LJ : Z× Z→ R+. Moreover, we suppose that

λJ = sup
n∈Z+

∞∑

k=0

LJ(n, k), λ = sup
J>0

λJ < 1. (2.14)

Then (2.1) has a unique Z+-bounded solution.

Proof. Let B be the set of bounded sequences ξ : Z+ → Rd with the
norm ‖ ξ ‖= supn≥0 | ξ(n) |. Then B is a Banach space. Define T on B
by

(Tξ)(n) = a(n)−
n∑

k=0

D(n, k, ξ(k)).

Then, by (2.11) and (2.12), T maps B into B. We claim that T is a
contraction. For any ξ1, ξ2 ∈ B, we have

|(Tξ1)(n)− (Tξ2)(n) |≤
n∑

k=0

LJ(n, k) | ξ1(k)− ξ2(k) |≤ λJ ‖ ξ1 − ξ2 ‖

by (2.11), (2.12), and (2.14). Hence, by (2.14), T is a contraction. There-
fore there exists a unique fixed point of (2.1) and it is a Z+-bounded
solution of (2.1).
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Now, we obtain an asymptotic behavior of a Z+-bounded solution of
Eq. (2.1) as follows.

Theorem 2.7. Under the assumptions (2.3) ∼ (2.6), we suppose that
Eq. (2.1) has a Z+-bounded solution x(n). For any sequence (nk) ⊂ Z+

with nk →∞ k →∞, let, for any n ∈ Z,

xk(n) =
{

x0 if n < −nk,
x(n + nk) if n ≥ −nk.

Then xk(n) converges to a Z-bounded solution y(n) of Eq. (2.10).

Proof. Let x(n) denote again the Z-extension of the solution x(n)
obtained by defining x(n) = x0 for n < 0. Then the sequence (xk(n))
is obtained by an (nk)-translation to the left of (x(n)). It is clear that
(xk(n)) is uniformly bounded on Z. Thus we way assume that (xk(n))
converges to a bounded sequence (y(n)) by taking a subsequence if nec-
essary.

Now, we show that y(n) satisfies (2.10) on Z, i.e.,

y(n) = e(n)−
n∑

k=−∞
E(n, k, y(k)), n ∈ Z (2.15)

From (2.1), (2.3) and (2.4), we have

x(n + nk) = xk(n) = a(n + nk)−
n+nk∑

k=0

D(n + nk, k, x(k))

= p(n + nk) + q(n + nk)−
n∑

k=−nk

P (n + nk, k + nk, xk(n))

−
n+nk∑

k=0

Q(n + nk, k, x(k)). (2.16)

Let J > 0 be a number with |x| = supn∈Z |x(n)| ≤ J . From (2.5), for
any ε > 0, there exists an N > 0 such that

n∑

k=−∞
PJ(n + N, k) < ε, n ∈ Z. (2.17)

Note that

P (n + nk) → e(n) as k →∞. (2.18)

By (2.3), we have

q(n + nk) → 0 as k →∞ (2.19)
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for any n ∈ Z. In view of (2.6), we obtain

lim sup
k→∞

|
n+nk∑

k=0

Q(n + nk, k, x(k))|

≤ lim sup
k→∞

n+nk∑

k=0

QJ(n + nk, k) = 0. (2.20)

Finally, we have

lim sup
k→∞

|
n∑

k=−nk

P (n + nk, k + nk, xk(n))−
n∑

k=−∞
E(n, k, y(k))|

≤ lim sup
k→∞

n∑

k=n−N

|P (n + nk, k + nk, xk(n))− E(n, k, y(k))|

+ lim sup
k→∞

n−N∑

k=−∞
PJ(n + nk, k + nk) +

n−N∑

k=−∞
|E(n, k, y(k))|

≤
n−N∑

k=−∞
|E(n, k, y(k))|+ ε

≤ sup
n−N∑

k=−∞
PJ(n, k) + ε ≤ 2ε

by (2.17) and (2.5). Hence, letting k →∞ in (2.12), we obtain the result
(2.15).

Theorem 2.8. Suppose that (2.3) ∼ (2.6). Let ξ = ψ + µ be any
asymptotically almost periodic function on Z+ with |ξ| ≤ J for some
J > 0. Then

d(n) =
n∑

k=0

D(n, k, ξ(k)), n ∈ Zk

is asymptotically almost periodic function and its almost periodic part
is

π(n) =
n∑

k=−∞
P (n, k, ψ(k)), n ∈ Z.

Proof. To prove that π(n) is almost periodic we show that for any
sequence (n

′
k) ⊂ Z there exists a subsequence (nk) ⊂ (n

′
k) such that
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(π(n + nk)) converges for n ∈ Z. Let (n
′
k) be any sequence in Z. Then,

by taking a subsequence (nk) of (n
′
k) if necessary, we have

P (n + nk, k + nk, x) → E(n, k, x) as k →∞ (2.21)

uniformly on ∆×XJ and

ψ(n + nk) → η(n) as k →∞ (2.22)

for n ∈ Z. We claim that
n+nk∑

k=−∞
P (n + nk, k, ψ(k)) →

n∑

k=−∞
E(n, k, η(k)) as k →∞ (2.23)

uniformly on Z. From (2.5), for any ε > 0 there exists an N1 > 0 such
that

n−N1∑

k=−∞
PJ(n, k) < ε, n ∈ Z. (2.24)

In view of (2.21), there exists an M1 > 0 such that for all k ≥ M1,

|P (n + nk, k + nk, k)−E(n, k, x)| < ε

N1
(2.25)

on ∆×XJ . Since E(n, k, x) is continuous in x ∈ XJ , there exists a δ > 0
such that

|E(n, k, x)− E(n, k, y)| < ε

N1
, (2.26)

whenever |x− y| < δ on XJ . Also, from (2.22), there exists an M2 > 0
such that for all k ≥ M2,

|ψ(n + nk)− η(n)| < δ on Z. (2.27)

Let k ≥ max{M1,M2}. Then, for any n ∈ Z, we obtain

|
n+nk∑

k=−∞
P (n + nk, k, ψ(k))−

n∑

k=−∞
E(n, k, η(k))|

≤ |
n∑

k=n−N1

|P (n + nk, k + nk, ψ(k + nk))− E(n, k, η(k))|

+
n+nk−N1∑

k=−∞
|P (n + nk, k, ψ(k))|+

n−N1∑

k=−∞
|E(n, k, η(k))|
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<

n∑

k=n−N1

|P (n + nk, k + nk, ψ(k + nk))−E(n, k, ψ(k + nk))|

+
n∑

k=n−N1

|E(n, k, ψ(k + nk))− E(n, k, η(k))|+ ε

+
n−N1∑

k=−∞
|E(n, k, η(k))| <

n−N1∑

k=−∞
|E(n, k, η(k))|+ 3ε

≤ 4ε

by (2.24), (2.25) and (2.26). Thus (2.23) is satisfied. This implies that
π(n) is almost periodic.

Now, we prove that d(n) − π(n) → 0 as n → ∞. For any ε > 0, let
N1 > 0 be an integer as in (2.24). Note that there exists a δ > 0 such
that (n, k, x), (n, k, y) ∈ ∆×XJ and |x− y| < δ imply

|P (n, k, x)− P (n, k, y)| < ε

N1
,

since P (n, k, x) is continuous in x. Also, there exists an N2 > 0 such
that for all n ≥ N2, |ξ(n)− ψ(n)| < δ. For any n ≥ N1 + N2 , we have

n∑

k=0

|P (n, k, ξ(k))− P (n, k, ψ(k))|

≤ 2
n−N1∑

k=0

PJ(n, k) +
n∑

k=n−N1

|P (n, k, ξ(k)− P (n, k, ψ(k))|

< 3ε. (2.28)

Also, we obtain from (2.24)

|
0∑

k=−∞
P (n, k, ψ(k))| ≤

0∑

k=−∞
PJ(n, k) < ε. (2.29)

Furthermore,

|
n∑

k=0

Q(n, k, ξ(k))| ≤
n∑

k=0

QJ(n, k), n ∈ Z+

→ 0 as n →∞, (2.30)

by (2.6). Hence, by (2.28), (2.29) and (2.30), d(n)−π(n) → 0 as n →∞.
It follows that d(n) is asymptotically almost periodic. This completes
the proof.
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