• Title/Summary/Keyword: alluvial soil

Search Result 162, Processing Time 0.041 seconds

Development of new models to predict the compressibility parameters of alluvial soils

  • Alzabeebee, Saif;Al-Taie, Abbas
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.437-448
    • /
    • 2022
  • Alluvial soil is challenging to work with due to its high compressibility. Thus, consolidation settlement of this type of soil should be accurately estimated. Accurate estimation of the consolidation settlement of alluvial soil requires accurate prediction of compressibility parameters. Geotechnical engineers usually use empirical correlations to estimate these compressibility parameters. However, no attempts have been made to develop correlations to estimate compressibility parameters of alluvial soil. Thus, this paper aims to develop new models to predict the compression and recompression indices (Cc and Cr) of alluvial soils. As part of the study, geotechnical laboratory tests have been conducted on large number of undisturbed samples of local alluvial soil. The obtained results from these tests in addition to available results from the literature from different parts in the world have been compiled to form the database of this study. This database is then employed to examine the accuracy of the available empirical correlations of the compressibility parameters and to develop the new models to estimate the compressibility parameters using the nonlinear regression analysis. The accuracy of the new models has been accessed using mean absolute error, root mean square error, mean, percentage of predictions with error range of ±20%, percentage of predictions with error range of ±30%, and coefficient of determination. It was found that the new models outperform the available correlations. Thus, these models can be used by geotechnical engineers with more confidence to predict Cc and Cr.

A Preliminary Study on Application of Alluvial Deposit in the Han River for Planting Soil (한강 퇴적토의 식재 토양 활용에 관한 기초연구)

  • Cho, Yong-Hyeon;Kim, Kap-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.4
    • /
    • pp.60-73
    • /
    • 2000
  • The purpose of the study was to analyze the feasibility of the alluvial deposit deposited on upper terrace in Han River as a substitute for conventional plant soil. For this purpose, the soil characteristics were analyzed, and germination and growth rate of pansy and marigold for 75 days were investigated. Soil contamination level of all the samples, except mineral oil, was analysed under the legal contamination level, while some mineral oil was detected in almost samples at 2.0~32mg/kg. The measures of the soil texture (sandy loam or loam), organic matter (2.5~5.5%), available phosphate (22~98mg/kg), exchangeable cation of K (0.5~1.1cmol/kg), Ca (0.9~9.6cmol/kg), Mg (0.1~0.7cmol/kg), Na (0.7~3.1cmol/kg), CEC (3.1~24.3cmol/kg) were identified as not worse than those of conventional planting soil. But the pH (5.1~5.3) was detected slightly lower than the range (5.5~6.9) of average domestic field soil. The germination rate of pansy in alluvial deposit was lower than that of fertile field or paddy field soil, while the growth rate of pansy for 75 days in alluvial deposit was as good as that of the compared fertile soils. But the germination rate and growth rate of marigold in alluvial deposit were much poorer than those of marigold in compared fertile soils. Consequently, the feasibility of alluvial deposit as a substitute for planting soil was evaluated to be high.

  • PDF

Effect of water cut-off by M.S.G. method for weathered soil and alluvial soil (풍화토 및 충적토 지반에 적용된 M.S.G공법의 차수효과)

  • 지덕진;우상백;강진기;김태한;박종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Generally, ordinary portland cement(OPC) is widely used for grouting to reduce permeability of ground under the foundations of structures. But, it is hard to be injected into the microscopic voids, fissures and crevices in soil or rock formation for the OPC material. Therefore new method what is called MSG(Micro Silica Grouting) has been developed recently to improve the weak point of the OPC material. In this case study, in order to verify performance of the MSG's water cut-off, trial injections were performed in rear of CIP(Cast in Place Pile) on the site A(weathered soil) and B(alluvial soil) that are constructed for the subway No. 9 nowadays. To take the proper grouting method of the MSG in the trial injecting, the injections are carried out for grouting types(constant pressure or fixed Quantity) and grouting methods(1.5shot or 2.0shot) and to confirm the effects of water cut-off and the injection range of the MSG, the tests of permeability and indicator(phenolphthalein) response were performed before and after the injection. Through the tests results, we could affirm the effects of water cut-off of the MSG and the injection range for the weathered and alluvial soil layers near the Han River. Finally we could make sure the application of the MSG method in actual construction under the layers.

  • PDF

Design and Construction Case of Urban Tunnel in Alluvial Soil (충적토사지반에서의 도심터널 설계 및 시공)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Sang-Jo;Kim, Do-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.829-834
    • /
    • 2009
  • Alluvial soil is one of the most difficult grounds for tunneling works due to the insufficient ground strength and excessive ground water inflow. Dduk island in Seoul has a wide alluvium developed by two rivers, Han and Jung-Ryang. Subway tunnel of $\bigcirc\bigcirc$ line planed across Dduk island has highly poor ground conditions due to small cover and deeply developed alluvium. Moreover, much part of this tunnel is located parallel to the bridge foundations of another railway with a small horizontal distance. Original design was done in 2002 and construction has been in progress. During the construction, tunnel design has been partly changed and adjusted for the complex ground condition and the demand from related organizations. This paper intend to introduce the urban tunnel design and construction in alluvial soils. This line could be divided three sections(A, B, C) according to ground and adjacent conditions. Section A is featured by mixed tunnel faces consisted with alluvial soils and weathered or weak rocks. The feature of section B is that tunnel underpasses near the bridge foundations of another subway. Lastly, section C with a very short length is the most difficult construction conditions due to the small cover, poor ground, obstacles on and underneath ground surface.

  • PDF

포항지역 지열수의 수리지구화학적 특성

  • 고동찬;염병우;하규철;송윤호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.453-454
    • /
    • 2004
  • Hydrogeochemical and isotopic characteristics were investigated for groundwater of Tertiary basin in southeastern part of Korea where deep drilling is in progress for geothermal investigation. According to geology, aquifer was distinguished as alluvial, tertiary sedimentary bedrock (bedrock groundwater), and fractured volcanic rock (deep groundwater). Groundwater of each aquifer is distinctively separated in Eh-pH conditions and concentrations of Cl, F, B and HCO$_3$. Deep groundwater has very low level 3H and 14C whereas alluvial groundwater has those of recent precipitation level. However one of deep groundwater show mixed characteristics in terms of hydrochemistry which indicates effect of pumping. Deep groundwater have temperature of 38 to 43$^{\circ}C$ whereas bedrock and alluvial groundwater have temperature less than 2$0^{\circ}C$. Fractured basement rock aquifer has different hydrogeologicalsetting from bedrock and alluvial aquifer considering hydrogeochemical and isotopic characteristics, and temperature.

  • PDF

Relationship of Topography and Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 지형과 미생물 군집의 관계)

  • Lee, Young-Han;Ahn, Byung-Koo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1158-1163
    • /
    • 2011
  • The present study was aimed to evaluate the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 20 sites in Gyeongnam Province. The soil microbial biomass carbon content of fan and valley $1,266mg\;kg^{-1}$ was higher than alluvial plain $578mg\;kg^{-1}$ (p<0.05). In addition, The dehydrogenase activity of fan and valley $204{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ was higher than alluvial plain $93{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in the fan and valley paddy soils were significantly higher than those in the alluvial plain paddy soils (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the fan and valley and alluvial plain in paddy soils.

국가지하수 관측망의 양수시험 자료 해석을 통한 대수층 특성 분석

  • 전선금;구민호;김용제;강인옥
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.487-491
    • /
    • 2004
  • For tile hydrogeological data of the National Groundwater Monitoring Wells(NGMW), a statistical analysis is made to reveal aquifer characteristics of the country. Results of the pumping and recovery test are classified into 4~5 types by the pattern of drawdown and residual drawdown curves. The analysis of aquifer characteristics shows that the hydraulic conductivity of alluvial aquifers is greater than that of fractured-rock aquifers. The hydraulic conductivity of alluvial aquifers slightly increases as the distance to the discharge area decreases. 77.5% of the NGMWs, where the distance to the discharge area is more than 100m, shows the constant head boundary. This result suggests that the fractured and the alluvial aquifers are fairly interconnected, and water can be supplied from one aquifer to tile other where pumping tests are performed. It is analyzed that the wells showing the impermeable boundary are influenced by small scale of aquifers, poor aquifer transmissivities, and impermeable layers.

  • PDF

금강 부여 군수리 충적 대수층 조사를 위한 고해상도 지구물리탐사 - 탄성파 탐사 및 GPR 조사를 중심으로 -

  • 김형수;서만철;이철우;진세화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.287-291
    • /
    • 2003
  • To delineate the internal structures of alluvial aquifer, high resolution seismic and GPR methods were adopted in Buyeo Gunsu-Ri area. The result of seismic refraction survey shows the water table of the aquifer and the result of seismic reflection reveals the basement and somewhat dominant internal structures of alluvial aquifer. The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey. GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units the lower inclined heterogeneous strata and the upper horizontally stratified strata. According to the increase of demand for water resource using artificial recharge in alluvium, it is believed that the information acquired by high resolution geophysical methods will have an important roles for the effective and sustainable development and usage of groundwater in alluvial aquifer.

  • PDF

Response of Nutrient Dynamics with Topography during the Rice Cultivation in Paddy Field

  • Kim, Min Kyeong;Choi, Soon Kun;Kim, Myung Hyun;Hong, Seong Chang;Park, Na Young;Hur, Seung Oh;So, Kyu Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.310-317
    • /
    • 2016
  • This study aimed to evaluate the nutrient load balance from rice paddy fields with different topographies, alluvial plain and local valley. Continuous monitoring from May to September, 2013 was conducted for water quantification and qualification from alluvial plain in Yeoju region (32 ha) and local valley in Jincheon region (24 ha). The discharge rates of T-N from the alluvial plain were 57.2, 5.84, 22.7, and $5.20kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. In case of local valley, T-N loads were 34.6, 4.73, 21.1, and $4.15kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. In contrary, the T-P loads from the alluvial plain were 2.23, 2.22, 2.54, and $0.41kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. In case of local valley, T-P loads were 1.44, 1.57, 1.82, and $0.34kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. The nutrient contents in drainage water were influenced by the amount of waters, rainfall, and surface drainage water. The Pearson correlation analysis showed that rainfall was significantly correlated with nutrient loads from July to August due to the amount of runoff in local valley paddy field, and irrigation was related with nutrient loads of drainage from July to August. This study showed that paddy rice farming in alluvial plain and local valley might be beneficial to water quality protection.