• 제목/요약/키워드: alloying

검색결과 1,173건 처리시간 0.025초

구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 I-Cu, Mn (Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron I-Cu, Mn)

  • 방웅호;강춘식;박재현;권영각
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.230-239
    • /
    • 2000
  • High pressure wear characteristics of DCI(Ductile Cast Iron) were investigated through unlubricated pin-on-disc wear test. Wear test were carried out at speed of 23m/min, under pressure of 3MPa and 3.3 MPa. Cu and/or Mn were added to examine the effect of alloying elements on the high pressure wear characteristics of DCI. To investigate the relationship between wear characteristics and mechanical properties of DCI, Brinell hardness and V-notched Charpy impact energy were tested. Wear surface of each specimen was observed by SEM to determine the wear mechanism of DCI under high pressure wear condition. In the mild wear region, wear characteristics of alloyed DCI specimens were very similar to that of unalloyed DCI. But mild-severe wear transition was occurred at different wear distance and wear rate of DCI specimens were changed by alloying elements. In severe wear condition, wear rate of DCI was dramatically increased by the addition of Mn. Although the addition of Cu 0.46wt% did not decrease the wear rate of DCI in the severe wear region, but it delayed the mild-severe wear transition. Under high pressure wear condition, wear rate and mild-severe wear transition were not concerned with hardness of DCI specimens, but they were deeply associated with impact energy changed by alloying elements.

  • PDF

기계적 합금화에 의한 Skutterudite계 FexCo4-xSb12의 합성 및 열전특성 (Thermoelectric Properties of Skutterudite FexCo4-xSb12 Synthesized by Mechanical Alloying Process)

  • 권준철;김일호;어순철
    • 한국분말재료학회지
    • /
    • 제12권5호
    • /
    • pp.357-361
    • /
    • 2005
  • Fe-doped skutterudite $CoSb_3$ with a nominal composition of $Fe_{x}Co_{4-x}Sb_{12}(0\;{\le}\;x\;{\le}\;2.5)$ has been synthesized by mechanical alloying (MA) of elemental powders, followed by hot pressing. Phase transformations during mechanical alloying and hot pressing were systematically investigated using XRD. Single phase skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. However, second phase in the form of marcasite structure $FeSb_2$ was found to exist in case of $x\;{\ge}\;2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties as functions of temperature and Fe contents were evaluated for the hot pressed specimens. Fe substitution up to x=1.5 with Co in $Fe_{x}Co_{4-x}Sb_{12}$ appeared to increase thermoelectric figure of merit (ZT) and the maximum ZT was found to be 0.78 at 525K in this study.

레이저빔에 의한 계면경사 Ni-Cr/steel 재료 제조에 관한 연구 (A study on the Fabrication of Graded-Boundary Ni-Cr/Steel Material by Laser Beam)

  • 김재현;김도훈
    • 한국레이저가공학회지
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2000
  • For a development purpose of thick metal / metal Graded-Boundary Materials(GBM), a basic research on the fabrication of Ni-Cr/steel GBM was carried out by a laser beam and its mechanical properties and thermal characteristics were investigated. In order to produce a compositionally graded boundary region between substrate steel and added Ni-Cr alloy, a series of surface alloying treatments was performed with a high power CO$_2$ laser beam. Ni-Cr sheet was placed on a low carbon steel plate(0.18%C), and then a CO$_2$ laser beam was irradiated on the surface to produce a homogeneous alloyed layer. On this first surface-alloyed layer, another Ni-Cr sheet was placed and then the CO$_2$ laser beam was irradiated again to produce second surface-alloyed layer. Sequential repetitions of laser surface alloying treatment 4 times resulted in a graded-boundary region with the thickness of about 1.4mm. Simultaneous concentration profiles of different kinds of alloying elements(Ni and Cr) showed from 42%Ni, 45%Cr and 13%Fe on surface region to 0%Ni, 0%Cr and 99%Fe in substrate region. Also a thermal conductivity gradient resulted in graded-region and its value changed from 0.03㎈/cm s$\^{C}$ in surface region to 0.1㎈/cm s$\^{C}$ in substrate region. Microstructural observation showed that any visible root porosities and solidification shrinkage cracks were not formed in graded region between alloyed layer and substrate region during rapid cooling.

  • PDF

CO2 레이저에 의한 Ti-6Al-4V 합금(合金)의 TiN 표면합금화(表面合金化) (TiN Surface-Alloying of Ti-6Al-4V Alloy by CO2 Laser)

  • 박상덕;이오연;송기흥
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.32-43
    • /
    • 1995
  • Ti-6Al-4V alloy are widely used in chemical and aircraft industries for their good corrosion resistance and high strength to weight ratio. Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN surface-alloyed layer with high hardness on the substrate very simplely by injecting reaction gas($N_2$) into a laser-generated melt pool and adjust the hardness to the specific requirements of the individual application by changing of laser processing parameters. This research has been investigated the effect of such parameters on TiN surface-alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum hardness of TiN surface-alloyed zone waw obtained by injecting 100% $N_2$ gas and it was decreased as the amount of $N_2$ gas in Ar and $N_2$ gas mixture was decreased. As scanning speed was increased, the hardness and depth of TiN surface-alloyed zone was decreased at constant laser power. The surface hardness after double scanning laser treatment is higher than that of single scanning. At constant laser power, the surface roughness is increased after the surface alloying if laser scanning speed is decreased.

  • PDF

알루미늄 함량에 따른 AGI (Austempered Gray Cast Iron)의 오스테나이트 형성 및 기계적 특성에 관한 연구 (Study on the Austenite Formation and Mechanical Properties of AGI (Austempered Gray Cast Iron) According to Aluminum Content)

  • 김동혁
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.543-549
    • /
    • 2021
  • 알루미늄 주철은 내산화성, 내황화성 및 부식성이 우수하다. Ti, Ni 합금에 비해 비전략적 원소인 Fe를 사용하는 비용이 상대적으로 저렴하여 구조재 및 스테인리스강의 대체재로 기대되고 있다. 이는 스테인리스 스틸을 사용하는 경우에 비해 약 30%의 중량 감소 효과를 가져온다. 알루미늄 합금의 경우 최근 몇 년간 주철의 합금원소로 널리 사용되고 있는 원소이다. 실온에서 연성이 부족하고 600℃를 초과하면 강도가 급격히 감소하여 실용화가 지연되었다. 실온 연성이 약한 원인은 수소에 의한 환경 취화로 알려져 있으며, 이러한 특성의 약점을 개선하기 위해 다양한 합금원소의 첨가가 시도되고 있다. 회주철의 경도와 내마모성을 높이기 위해 주로 바나듐, 크롬, 망간 등의 합금원소를 사용하고 있지만, 이러한 원소를 포함하는 완제품의 가격과 합금화의 문제는 많은 한계가 있다.

Effect of mechanical alloying on the microstructural evolution of a ferritic ODS steel with (Y-Ti-Al-Zr) addition processed by Spark Plasma Sintering (SPS)

  • Macia, E.;Garcia-Junceda, A.;Serrano, M.;Hong, S.J.;Campos, M.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2582-2590
    • /
    • 2021
  • The high-energy milling is one of the most extended techniques to produce Oxide dispersion strengthened (ODS) powder steels for nuclear applications. The consequences of the high energy mill process on the final powders can be measured by means of deformation level, size, morphology and alloying degree. In this work, an ODS ferritic steel, Fe-14Cr-5Al-3W-0.4Ti-0.25Y2O3-0.6Zr, was fabricated using two different mechanical alloying (MA) conditions (Mstd and Mact) and subsequently consolidated by Spark Plasma Sintering (SPS). Milling conditions were set to evidence the effectivity of milling by changing the revolutions per minute (rpm) and dwell milling time. Differences on the particle size distribution as well as on the stored plastic deformation were observed, determining the consolidation ability of the material and the achieved microstructure. Since recrystallization depends on the plastic deformation degree, the composition of each particle and the promoted oxide dispersion, a dual grain size distribution was attained after SPS consolidation. Mact showed the highest areas of ultrafine regions when the material is consolidated at 1100 ℃. Microhardness and small punch tests were used to evaluate the material under room temperature and up to 500 ℃. The produced materials have attained remarkable mechanical properties under high temperature conditions.

기계적 합금화법에 의한 실리콘계 복합물질의 전지전극특성 (Battery Electrode Characteristics of Si-based Composite by Mechanical Alloying Method)

  • 이철경;이종호;이상우
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.389-395
    • /
    • 2009
  • A Si-CuO-graphite composite was prepared by a mechanical alloying (MA) method. The Si-CuO composite has a mixture structure, where CuO is homogeneously dispersed in Si. Also, $Cu_2O$ and $Cu_3Si$ phases were formed during MA and heat treatment. Graphite with the Si-CuO composite was mixed in the same mill for 30 minutes with weight ratio of Si-CuO composite and graphite as 1:1. The Si-CuO composite was homogeneously covered with graphite. SiC phase was not formed. Electrochemical tests of the composite have been investigated, and the first charge and discharge capacities of the material were about 870mAh/g and 660mAh/g, respectively. Those values are about 76% of the first cycle efficiency. The cycle life of the composite showed that the initial discharge capacity of 660 mAh/g could be maintained up to 92% after 20 cycles.

Effect of the Si-C Powder Prepared by Mechanical Alloying on the Densification of Silicon Carbide Powder

  • Yoon, Bola;Lee, Sea-Hoon;Lee, Heesoo;Hwang, Geumchan;Kim, Byungsook
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.99-104
    • /
    • 2016
  • High purity Si-C (99.999%) powder prepared by mechanical alloying was added to a commercial SiC powder as a sintering additive. Reaction bonded silicon carbide balls and jars with high purity (99.98%) were used for the mechanical alloying. As a result, the purity of the sintered Si-C was higher than 99.99%. When sintered at $2200^{\circ}C$ under 50 MPa pressure for 1 h, SiC containing 10 wt% of high purity Si-C showed a relative density of 95.3%, similar to the relative density of commercial SiC (95%). However, the relative density of SiC decreased to 90.6% without the additive when the applied pressure decreased to 40 MPa. In contrast, the relative density was nearly unaffected by the decrease of the pressure when using the Si-C additive. Therefore, the addition of Si-C powder promoted the densification of SiC above $2000^{\circ}C$ under 40 MPa pressure.

기계적합금법에 의해 제조된 TiNi합금의 수소화반응특성에 관한 연구 (A Study on the Hydrogenation Properties of TiNi Alloy Fabricated by Mechanical Alloying Method)

  • 안효준;김보수;황진환;안인섭;김기원;허보영
    • 한국수소및신에너지학회논문집
    • /
    • 제5권2호
    • /
    • pp.73-79
    • /
    • 1994
  • The hydrogenation behavior of Ti-Ni powders prepared by mechanical alloying in a high energy ball mill have been investigated by P-C isotherm curves, DSC(differential scanning calorimetry), X-ray diffractometer, SEM(scanning electron microscope). Amorphous TiNi phase was formed after 10 milling hours. The hydrogen storage capacity gradually decreased as a function of mechanical alloying time. There appears the DSC endothermic peak due to hydrogen evolution of amorphous hydride phase.

  • PDF

Nb가 첨가된 신형 지르코늄 피복관의 열적 크리프 거동 (Thermal Creep Behavior of Advanced Zirconium Claddings Contained Niobium)

  • 김준환;방제건;정용환
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.451-456
    • /
    • 2004
  • Thermal creep properties of the zirconium tube which was developed for high burnup application were evaluated. The creep test of cladding tubes after various final heat treatment was carried out by the internal pressurization method in the temperature range from $350^{\circ}C to 400^{\circ}C$ and from 100 to 150 MPa in the hoop stress. Creep tests were lasted up to 900days, which showed the steady-state secondary creep rate. The creep resistance of zirconium claddings was higher than that of Zircaloy-4. Factors that affect creep resistance, such as final annealing temperature, applied stress and alloying element were discussed. Tin as an alloying element was more effective than niobium due to solute hardening effect of tin. In case of advanced claddings, the optimization of final heat treatment temperature as well as alloying element causes a great influence on the improvement of creep resistance.