DOI QR코드

DOI QR Code

Thermoelectric Properties of Skutterudite FexCo4-xSb12 Synthesized by Mechanical Alloying Process

기계적 합금화에 의한 Skutterudite계 FexCo4-xSb12의 합성 및 열전특성

  • Kwon, Joon-Chul (Dept. of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University) ;
  • Kim, Il-Ho (Dept. of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University) ;
  • Ur, Soon-Chul (Dept. of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University)
  • 권준철 (충주대학교 신소재공학과, 친환경 에너지 변환 저장소재 및 부품개발 연구센터) ;
  • 김일호 (충주대학교 신소재공학과, 친환경 에너지 변환 저장소재 및 부품개발 연구센터) ;
  • 어순철 (충주대학교 신소재공학과, 친환경 에너지 변환 저장소재 및 부품개발 연구센터)
  • Published : 2005.10.01

Abstract

Fe-doped skutterudite $CoSb_3$ with a nominal composition of $Fe_{x}Co_{4-x}Sb_{12}(0\;{\le}\;x\;{\le}\;2.5)$ has been synthesized by mechanical alloying (MA) of elemental powders, followed by hot pressing. Phase transformations during mechanical alloying and hot pressing were systematically investigated using XRD. Single phase skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. However, second phase in the form of marcasite structure $FeSb_2$ was found to exist in case of $x\;{\ge}\;2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties as functions of temperature and Fe contents were evaluated for the hot pressed specimens. Fe substitution up to x=1.5 with Co in $Fe_{x}Co_{4-x}Sb_{12}$ appeared to increase thermoelectric figure of merit (ZT) and the maximum ZT was found to be 0.78 at 525K in this study.

Keywords

References

  1. G. S. Nolas, D. T. Morelli and T. M. Tritt : Annu. Rev. Mater. Sci., 29 (1999) 89 https://doi.org/10.1146/annurev.matsci.29.1.89
  2. T. Caillat, A. Borschchevsky and J.-P. Fleurial : J. Appl. Phys., 80 (1996) 4442 https://doi.org/10.1063/1.363405
  3. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin and B. C. Sales : J. Appl. Phys. 78 (1995) 1013 https://doi.org/10.1063/1.360402
  4. J. Yang, G. P. Meisner, D. T. Morelli and C. Uher : Phys. Review B, 63, 014410-1 (2000) https://doi.org/10.1103/PhysRevB.63.014410
  5. I.-H. Kim, G.-S. Choi, M.-G. Han, J.-S. Kim, J.-I. Lee, S.-C. Ur, T.-W. Hong, Y-G. Lee and S.-L. Ryu : Mater. Sci. Forum 449 (2004) 917 https://doi.org/10.4028/www.scientific.net/MSF.449-452.917
  6. G. P. Meisner, D. T. Morelli, S. Hu, J. Yang and C. Uhre : Phys. Rev. Lett. 80 (1998) 3551 https://doi.org/10.1103/PhysRevLett.80.3551
  7. S.-C. Ur, P. Nash and I.-H. Kim : J. of alloys and Compounds, 361 (2003) 84 https://doi.org/10.1016/S0925-8388(03)00418-3
  8. D. M. Rowe and V. S. Schukla : J. Appl. Phys., 52 (1981) 7421 https://doi.org/10.1063/1.328733
  9. M.-K. Choi, S.-C. Ur, J.-C. Kwon, K.-W. Cho, I.-H. Kim, Y.-G. Lee and S.-L. Ryu :Materials Science Forum, 486 (2005) 642 https://doi.org/10.4028/www.scientific.net/MSF.486-487.642
  10. S. Katsuyama, Y. Shichijo, M. Ito, K. Majima and H. Nagai : J. of Applied Physics, 84 (1998) 6708 https://doi.org/10.1063/1.369048
  11. J. Nagao, M. Ferhat, H. Anno, K. Matsubara, E. Hatta and K. Mukasa : Applied Physics Letters, 76 (2000) 3436 https://doi.org/10.1063/1.126670