• Title/Summary/Keyword: all-optical switch

Search Result 37, Processing Time 0.041 seconds

Optical Pattern Switching in Semiconductor Microresonators as All-Optical Switch

  • Kheradmand, Reza;Dastmalchi, Babak
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.593-597
    • /
    • 2009
  • In this paper, we present a spatial perturbation method to control the optical patterns in semiconductor microresonators in the far-field configuration. We propose a fast all-optical switch which operates at a low light level. The switching beam controls the behavior of output beams with strong intensities. The method has been applied successfully to different optical patterns such as rolls, squares, and hexagons.

A study of nonlinear interactions in all-optical phase-shift switch using higher-order soliton pulse with femtosecond width (극초단 고차솔리톤펄스를 이용한 전광위상천이스위치에서 고차 비선형상호작용에 관한 연구)

  • 윤기홍;송재원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2002
  • We study numerically the temporal evolutions of two orthogonally polarized pulses with width less than 100fsec in all-optical phase-shift switches. We analyze the complicated interplay between a soliton pulse and a higher-order soliton pulse, including the self-and the cross-Raman scattering and the walk-off effect. We also investigate the influence of these interactions on switching performance, including pulse-shape, phase-shift distribution, and contrast ratio. In particular we show that an optical fiber with a typical birefringence (Δn : 2.4$\times$10$^{-5}$ ) can be used with good switching performance in such all-optical switches.

Mach-Zehnder Type Tandem Optical Switch/Modulator using a Single-Mode Interconnecting Waveguide and Its Switching Characteristics

  • Choi, Young-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.287-291
    • /
    • 2009
  • In this paper, an optical switch/modulator is designed and its light propagating characteristics analyzed using a simplified BPM. The distinctive feature of this switch/modulator is that all its waveguide branches are designed as single-mode. The principle of the device is based on the coupled mode theory in the Y-junction interconnecting waveguide. In spite of the fact all waveguides are designed as single-mode, by adjusting the interconnecting waveguide length'of the device the same characteristics as existing up to date devices are obtainable. Numerical results show that the switching characteristics periodically depend upon an interconnecting waveguide length with a spatial of about $150^{{\mu}m}$ in the $Ti:LiNbO_3$ step index waveguide. The design concept would therefore be utilized effectively in fabricating a monolithic high density optical integrated circuit.

BPM Design Optimization of Mach-Zehnder Type Tandem Optical Switch and Its Operational Characteristics (2단 종속 접속 마하젠더형 광스위치의 BPM 최적설계 및 동작특성)

  • Choi, Young-Kyu;Kim, Gi-Rae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1829-1834
    • /
    • 2008
  • An optical switch/modulator is designed and the light propagating characteristics is analyzed by the simplified BPM. The distinctive feature of the switch/modulator is that all the waveguide branches are designed to be single-mode. Principle of the device is based on the coupled mode theory in the Y-junction interconnecting waveguide. In spite of all the waveguides are designed to be single-mode, adjusting the interconnecting waveguide length of the device, the same characteristics as existing device up to date is obtainable. Numerical results show that the switching characteristics periodically depends on the interconnecting waveguide length with a spatial of about 150${\mu}m$ in the Ti:LiNbO3 step index waveguide. The concept of design would be utilized effectively in fabricating the monolithic high density of optical integrated circuit.

Performance Analysis of a High-Speed All-Optical Subtractor using a Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer

  • Salehi, Mohammad Reza;Taherian, Seyed Farhad
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • This paper presents the simulation and design of an all-optical subtractor using a quantum-dot semiconductor optical amplifier Mach-Zehnder interferometer (QD-SOA MZI) structure consisting of two cascaded switches, the first of which produces the differential bit. Then the second switch produces the borrow bit by using the output of the first switch and the subtrahend data stream. Simulation results were obtained by solving the rate equations of the QD-SOA. The effects of QD-SOA length, peak power and current density have been investigated. The designed gate can operate at speeds of over 250 Gb/s. The simulation results demonstrate a high extinction ratio and a clear and wide-opening eye diagram.

Fabrication of semiconductor optical switch module using laser welding technique (반도체 광스위치 모듈의 제작 및 특성연구)

  • 강승구
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 1999
  • Semiconductor optical switch modules of 1$\times$2, 1$\times$4, and 4$\times$4 types for 1550 nm optical communication systems were fabricated by using laser welding technique, embodying in 30-pin butterfly package. For better coupling efficiency between switch chip and optical fiber, tapered fibers of 10~15mm lens radii were used, which provided up to 60% optical coupling efficiency. With the help of new laser hammering process, we could recover the lost optical power almost completely up to average 82% of initially obtained power. The fabricated optical switch modules showed good thermal stability of less than 5% degradation even after 200 times thermal cycling test. The 2.5 Gbps optical transmission characteristics of the 4$\times$4 switch module showed low sensitivities of less than -30dB for all possible switching paths. The transmission penalties of 1$\times$2 switch module at $10^{-10}$ BER were 0.6dB and 0.7dB for 50Xm and 90 Km optical fibers, respectively.

  • PDF

An Improvement of Speed for Wavelength Multiplex Optical Network using Optical Micro Electro Mechanical Switches (광마이크로전자기계 스위치를 이용한 파장다중 광네트워크의 속도 재선)

  • Lee Sang-Wha;Song Hae-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.123-132
    • /
    • 2005
  • In this Paper, we present an improvement of switch node for wavelength multiplex optical network. Currently because of quick increase of internet traffic a big network capacity is demanded. Wavelength multiplex optical network Provides the data transfer of high speed and the transparent characteristic of the data. Therefore optic network configuration is the most powerful technology in the future. It will be able to control the massive traffic from the optical network in order to transmit the multimedia information of very many quantify. Consequently the node where the traffic control is Possible, is demanded. The optical switch node which manages efficiently the multiple wavelength was Proposed. This switch is composed of a optical switch module for switching and a wavelength converter module for wavelength conversion. It will be able to compose the switch fabric without optical/electro or electro/optical conversion using optical MEMS(Micro Electro Mechanical Switches) module. Finally, we present the good test result regarding the operational qualify of the switch fabric and the performance of optical signal from the switch node. The proposed switch node of the optic network will be able to control the massive traffic with all optical.

  • PDF

An experimental optical cross-connect (광상호분배기 실험 모델)

  • 이성은;윤병호방준학서완식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.995-997
    • /
    • 1998
  • The experimental optical cross-connect based on delivery and coupling switch features all-optical property. It consists of erbium-doped fiber amplifiers, arrayedwaveguide gratings, optical switches and optical combiners. In 4 channel wavelength division multiplexing with 1.6 nm spacing, the difference in power level among channels for output signals from the optical cross-connect was within 2 dB.

  • PDF