DOI QR코드

DOI QR Code

Performance Analysis of a High-Speed All-Optical Subtractor using a Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer

  • Salehi, Mohammad Reza (Department of Electrical and Electronics Engineering, Shiraz University of Technology) ;
  • Taherian, Seyed Farhad (Department of Electrical and Electronics Engineering, Shiraz University of Technology)
  • Received : 2013.11.28
  • Accepted : 2014.02.04
  • Published : 2014.02.25

Abstract

This paper presents the simulation and design of an all-optical subtractor using a quantum-dot semiconductor optical amplifier Mach-Zehnder interferometer (QD-SOA MZI) structure consisting of two cascaded switches, the first of which produces the differential bit. Then the second switch produces the borrow bit by using the output of the first switch and the subtrahend data stream. Simulation results were obtained by solving the rate equations of the QD-SOA. The effects of QD-SOA length, peak power and current density have been investigated. The designed gate can operate at speeds of over 250 Gb/s. The simulation results demonstrate a high extinction ratio and a clear and wide-opening eye diagram.

Keywords

References

  1. A. Dolatabady and N. Granpaye, "All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators," J. Opt. Soc. Korea 16, 432-442 (2012). https://doi.org/10.3807/JOSK.2012.16.4.432
  2. S. Kaur and R.-S. Kaler, "Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier," J. Opt. Soc. Korea 16, 13-16 (2012). https://doi.org/10.3807/JOSK.2012.16.1.013
  3. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific Pub, 2006).
  4. J. E. McGeehan, S. Kumar, and A. E. Willner, "Simultaneous optical digital half-subtraction and-addition using SOAs and a PPLN waveguide," Opt. Express 15, 5543-5549 (2007). https://doi.org/10.1364/OE.15.005543
  5. J. K. Rakshit, T. Chattopadhyay and J. N. Roy, "Design of micro ring resonator based all optical adder/subtractor," Theoretical and Applied Physics 1, 32-43 (2013).
  6. S. K. Chandra, "All optical single module phase encoded half-adder and half-subtractor exploiting four wave mixing in semiconductor optical amplifier," Journal of Electronics and Communication Engineering 6, 67-71 (2013). https://doi.org/10.9790/2834-0626771
  7. S. Kaur and R. Kaler, "All optical integrated full adder-subtractor and demultiplexer using SOA-based Mach-Zehnder interferometer," International Journal of Engineering Science 4, 303-310 (2012).
  8. F. Remacle and R. Levine, "All-optical digital logic: Full addition or subtraction on a three-state system," Physical Review A 73, 033820 (2006). https://doi.org/10.1103/PhysRevA.73.033820
  9. D. K. Gayen, R. K. Pal, and J. N. Roy, "All-optical adder/subtractor based on terahertz optical asymmetric demultiplexer," Chinese Optics Letters 7, 530-533 (2009). https://doi.org/10.3788/COL20090706.0530
  10. C. Gui and J. Wang, "Simultaneous optical half-adder and half-subtracter using a single slot waveguide," IEEE Photonics Journal 5, 684-691 (2013).
  11. B. Dai, S. Shimizu, X. Wang, and N. Wada, "Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 25, 91-93 (2013). https://doi.org/10.1109/LPT.2012.2228847
  12. S. Sahu, R. R. Pal, and S. Dhar, "A novel method of implementing nonlinear material based all-optical binary half subtractor and full subtractor system," J. Electron Devices 10, 493-498 (2011).
  13. L. A. Bakhtiar, E. Yaghoubi, A. Adami, S. M. Hamidi, and M. Hosseinzadeh, "The design of half-subtractor logic function based on nonlinear directional coupler," Journal of Computer Engineering 1, 3-11 (2009).
  14. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, "XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer," Opt. Express 13, 1892-1899 (2005). https://doi.org/10.1364/OPEX.13.001892
  15. M. V. D. Poel and J. M. Hvam, "Ultrafast dynamics of quantum-dot semiconductor optical amplifiers," Journal of Materials Science: Materials in Electronics 18, 51-55 (2007). https://doi.org/10.1007/s10854-007-9168-x
  16. A. Kotb, "NOR gate based on QD-SOA at 250 Gbit/s," Optical and Quantum Electronics 45, 473-480 (2013). https://doi.org/10.1007/s11082-013-9661-9
  17. Y. B. Ezra, B. I. Lembrikov, and M. Haridim, "Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers," IEEE J. Quantum Electron. 45, 34-41 (2009). https://doi.org/10.1109/JQE.2008.2003497
  18. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, "Static gain saturation in quantum dot semiconductor optical amplifiers," Opt. Express 16, 8269- 8279 (2008). https://doi.org/10.1364/OE.16.008269
  19. A. Rostami, H. A. Nejad, R. M. Qartavol, and H. R. Saghai, "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers," IEEE J. Quantum Electron. 46, 354-360 (2010). https://doi.org/10.1109/JQE.2009.2033253
  20. H. Han, M. Zhang, P. Ye, and F. Zhang, "Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear mach-zehnder interferometer," Opt. Commun. 281, 5140-5145 (2008). https://doi.org/10.1016/j.optcom.2008.07.020
  21. W. Lin, S. Ma, H. Hu, and N. K. Dutta, "All optical latches using quantum-dot semiconductor optical amplifier," Opt. Commun. 285, 5138-5143 (2012). https://doi.org/10.1016/j.optcom.2012.07.085
  22. W. Yang, M. Zhang, and P. Ye, "Analysis of 160Gb/s all-optical NRZ-to-RZ data format conversion using quantumdot semiconductor optical amplifiers assisted Mach-Zehnder interferometer," Opt. Commun. 282, 1744-1750 (2009). https://doi.org/10.1016/j.optcom.2009.01.055
  23. E. Dimitriadou and K. Zoiros, "On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Optics & Laser Technology 44, 600-607 (2012). https://doi.org/10.1016/j.optlastec.2011.08.028
  24. E. Dimitriadou and K. Zoiros, "On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Optics & Laser Technology 44, 1971-1981 (2012). https://doi.org/10.1016/j.optlastec.2012.02.022
  25. S. Singh, "Ultrahigh speed optical signal processing logic based on an SOA-MZI," IEEE J. Select. Topics Quantum Electron. 18, 970-977 (2012). https://doi.org/10.1109/JSTQE.2011.2155623

Cited by

  1. Design and Performance Investigation for the Optical Combinational Networks at High Data Rate vol.38, pp.2, 2017, https://doi.org/10.1515/joc-2016-0066
  2. Digitizing radio-over-fiber transceiver based on optical tunable encoder and optical codewords vol.33, pp.3, 2017, https://doi.org/10.1007/s11107-016-0644-1
  3. All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier vol.19, pp.3, 2015, https://doi.org/10.3807/JOSK.2015.19.3.222
  4. All-optical binary full subtractor using logic operations based on nonlinear properties of semiconductor optical amplifier vol.25, pp.01, 2016, https://doi.org/10.1142/S021886351650003X
  5. Ultrafast all-optical digital comparator using quantum-dot semiconductor optical amplifiers vol.51, pp.2, 2019, https://doi.org/10.1007/s11082-019-1756-5