• Title/Summary/Keyword: alkylation

Search Result 204, Processing Time 0.031 seconds

Efficient Synthesis of 2-Substituted 2,3-Dihydro-4-quinolones as Potential Intermediates for 2-Substituted 1,2,3,4-Tetrahydro-4-quinolone Antitumor Agents

  • Choi Sun;Jung Keumn-Yeo;Ryu Jae-Sang
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.369-374
    • /
    • 2006
  • An efficient method for the synthesis of optically active 2-substituted 2,3-dihydro-4-quinolones has been developed. The key features include the introduction of a chiral side chain and the construction of quinolone skeleton by Mitsunobu alkylation and hydroarylation, respectively.

A Convenient Synthesis of Optically Active Unhindered Aliphatic Alcohols with High Optical Purity from Non-Racemic β-Hydroxy Sulfides

  • Cho, Byung-Tae;Kim, Dong-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1385-1391
    • /
    • 2004
  • A general route for the synthesis of optically active unhindered aliphatic alcohols, where the steric demands between two alkyl groups adjacent to the carbinol are similar, with high enantiomeric purity has been developed by sulfoxifation of chiral ${\beta}$-hydroxy sulfides, followed by alkylation and desulfurization.

Re-evaluation of [18F]fluorobenzaldehyde as a prosthetic group

  • Choe, Yearn Seong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.75-79
    • /
    • 2015
  • [$^{18}F$]Fluorobenzaldehyde, which is a versatile radioactive prosthetic group, can undergo reduction, reductive amination, or oxidation to be used for synthesis of diverse radiotracers. This review covers synthesis of [$^{18}F$]fluorobenzaldehyde and its conversion to secondary prosthetic groups, and also highlights its application to the development of radiotracers.

The Synthesis of p-acetylcalix[4]arene via Fries Rearrangement Route

  • No, Kwang-Hyun;Noh, Yeoung-Joo;Kim, Youn-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.442-444
    • /
    • 1986
  • Starting with the readily available p-tert-butyl-calix[4]arene 2, tert-butyl groups are removed by $AlCl_3$-catalyzed de-alkylation reaction, and the calix[4]arene 3 formed is converted to the tetraacetate 4. This compound undergoes Fries rearrangement to yield p-acetylcalix[4]arene 6, which seems to be an attractive starting material for the introduction of functional groups. As a preliminary experiment p-(1-hydroxyethyl)calix[4]arene 7 is prepared by LiAlH$_4$ reduction of 6.

Ruthenium Complex Catalyzed Synthesis of 2-Substituted Benzoxazoles from o-Aminophenol and Alcohol with Spontaneous Hydrogen Evolution

  • Keun-Tae Huh;Sang Chul Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.449-452
    • /
    • 1993
  • o-Aminophenols react with alcohols in the presense of a catalytic amount of ruthenium catalyst at 180$^{\circ}C$ to give 2-substituted benzoxazole in good yield. The yields of 2-substituted benzoxazoles were affected by the yield of N-alkylation compound from o-aminophenol and alcohol as starting materials. During the reaction, a stoichiometric amount of hydrogen was spontaneously evolved into the gas phase.

Diasteroselective synthesis of long chained keto amino acids derivatives

  • Kim, Eun-Young;Kim, Eun-Jung;Ko, Hyo-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.347.2-347.2
    • /
    • 2002
  • The unusal keto amino acid. (s)-2-amino-8-oxodecanoic acid(Aoda) is a biologically important constituent of the naturally occurring cyclic tetrapeptides such as apicidins. Consequently extensive chemical modifications of Aoda residue of apicidin were studied, and we are obtained the practical and versatile synthesis of the long-chained keto amino acids in enantlomerically pure form by alkylation with bromoketone and chiral Scholkopf auxiilary. (omitted)

  • PDF

Synthesis of Water Soluble Chitosan Derivatives with Quaternary Ammonium Salt and Their Flocculating Behavior (4차 Ammonium 기를 가진 새로운 수용성 Chitosan 유도체의 제조 및 이들의 응집거동에 관한 연구)

  • Kim, Chun-Ho;Jung, Byung-Ok;Choi, Kyu-Suk;Kim, Jae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 1996
  • N-methyl, N-butyl and N,N-dibutyl chitosan derivatives were prepared by Schiff's base formation and hydrogenation in aqueous media. Furthermore quaternization of the chitosan derivatives was performed in N-methyl-2-pyrrolidone using methyl iodide to obtain water soluble cationic polyelectrolytes. It was confirmed that O-alkylation was occured as well as selective N-alkylation in these reactions. Chitosan and chitosan derivatives with quaternary ammonium iodide showed high flocculation power as the cationic flocculant. When tested on paper mill waste water, they showed high flocculation power, independing of pH range. The flocculation power was increased as the N-alkyl chain length was increased. Among them, N-butyl dimethyl chitosan ammonium iodide showed better flocculation power than chitosan. But, N,N-dibutyl-N-methyl chitosan ammonium iodide showed less flocculation powre than chitosan itself.

  • PDF

DNA Structural Perturbation Induced by the CPI-Derived DNA Interstrand Cross-linker : Molecular Mechanisms for the Sequence Specific Recognition

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • The highly potent cytotoxic DNA-DNA cross-linker consists of two cyclopropa[c]pyrrolo[3,4-3]indol-4(5H)-ones insoles [(+)-CPI-I] joined by a bisamido pyrrole (abbreviated to "Pyrrole"). The Pyrrole is a synthetic analog of Bizelesin, which is currently in phase II clinical trials due to its excellent in vivo antitumor activity. The Pyrrole has 10 times more potent cytotoxicity than Bizelesin and mostly form DNA-DNA interstrand cross-links through the N3 of adenines spaced 7 bp apart. The Pyrrole requires a centrally positioned GC base pair for high cross-linking reactivity (i.e., $5^1$-T$AT_2$A*-$3^1$), while Bizelesin prefers purely AT-rich sequences (i.e., $5^1$-T$AT_4$A*-$3^1$, where /(equation omitted) represents the cross-strand adenine alkylation and A* represents an adenine alkylation) (Park et al., 1996). In this study, the high-field $^1$H-NMR and rMD studies are conducted on the 1 1-mer DNA duplex adduct of the Pyrrole where the 5′(equation omitted)TAGTTA*-3′sequence is cross-linked by the drug. A severe structural perturbation is observed in the intervening sequences of cross-linking site, while a normal B-DNA structure is maintained in the region next to the drug-modified adenines. Based upon these observations, we propose that the interplay between the bisamido pyrrole unit of the drug and central C/C base pair (hydrogen-bonding interactions) is involved in the process of cross-linking reaction, and sequence specificity is the outcome of those interactions. This study suggests a mechanism for the sequence specific cross-linking reaction of the Pyrrole, and provides a further insight to develop new DNA sequence selective and distortive cross-linking agents.

  • PDF

The Study of Donor-Acceptor Chromophores and Diketopyrrolopyrrole(DPP) Analogues (Donor-Acceptor 발색단과 디케토피롤로피롤(DPP) 유도체에 관한 연구)

  • Kim, HunSoo;Kim, SeungHoi;Park, SooYoul
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.141-146
    • /
    • 2016
  • The diketopyrrolopyrrole (DPP) pigment is a bicyclic 8-π-electron system containing two lactam units. Typical DPP derivative pigments have melting points of over 350°C and very low solubility in most solvents, and show absorption in the visible region with a molar extinction coefficient of 33,000 dm2mol−1 and strong photoluminescence with maxima in the range 500–600 nm. X-ray structure analyses of DPP show that the whole molecule is almost in one plane. The phenyl rings are twisted out of the heterocyclic plane and the intermolecular hydrogen bonding between neighboring lactam NH and carbonyl units influences the structure of the DPP pigment in the solid state. In this study, mono-N-alkylation and mono-N-arylation were undertaken for Pigment Red 264 or Pigment Orange 73 with alkyl halide and aryl halide, respectively, in the presence of sodium tert-butoxide as a base catalyst to improve the solubility of DPP pigments and their application as CO2 indicators. The synthetic yield was in the range 11–88%. The indicator dyes are highly soluble in organic solvents and shows pH-dependent absorption (λmax 501 and 572 nm for the protonated and deprotonated forms, respectively) and emission (λmax 524 and 605 nm for the protonated and deprotonated forms, respectively) spectra. The mono-N-alkylated and mono-N-arylated DPP pigment was identified by 1H-NMR (1H-Nuclear Magnetic Resonance Spectrometer), FT-IR (Fourier Transform Infrared Spectroscopy), and MS (Mass Spectrometry). According to the results of color and hue properties obtained by a color matching analyzer, the synthesized DPP pigment material can be used as a CO2 indicator.

Evidence for a Common Molecular Basis for Sequence Recognition of N3-Guanine and N3-Adenine DNA Adducts Involving the Covalent Bonding Reaction of (+)-CC-1065

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.11-24
    • /
    • 2002
  • The antitumor antibiotic (+)-CC-1065 can alkylate N3 of guanine in certain sequences. A previous high-field $^1H$ NMR study on the$(+)-CC-1065d[GCGCAATTG*CGC]_2$ adduct ($^*$ indicates the drug alkylation site) showed that drag modification on N3 of guanine results in protonation of the cross-strand cytosine [Park, H-J.; Hurley, L. H. J. Am. Chem. Soc.1997, 119,629]. In this contribution we describe a further analysis of the NMR data sets together with restrained molecular dynamics. This study provides not only a solution structure of the (+)-CC-1065(N3- guanine) DNA duplex adduct but also new insight into the molecular basis for the sequence- specific interaction between (+)-CC-1065 and N3-guanine in the DNA duplex. On the basis of NOESY data, we propose that the narrow minor groove at the 7T8T step and conformational kinks at the junctions of 16C17A and 18A19T are both related to DNA bending in the drugDNA adduct. Analysis of the one-dimensional $^1H$ NMR (in $H_2O$) data and rMD trajectories strongly suggests that hydrogen bonding linkages between the 8-OH group of the (+)-CC-1065 A-sub-unit and the 9G10C phosphate via a water molecule are present. All the phenomena observed here in the (+)-CC-1065(N3-guanine) adduct at 5'$-AATTG^*$are reminiscent of those obtained from the studies on the (+)-CC-1065(N3-adenine) adduct at $5'-AGTTA^*$, suggesting that (+)-CC-1065 takes advantage of the conformational flexibility of the 5'-TPu step to entrap the bent structure required for the covalent bonding reaction. This study reveals a common molecular basis for (+)-CC-1065 alkylation at both $5'-TTG^*$ and $5'-TTA^*$, which involves a trapping out of sequence-dependent DNA conformational flexibility as well as sequence-dependent general acid and general base catalysis by duplex DNA.