• 제목/요약/키워드: alkaline dissolution

검색결과 57건 처리시간 0.043초

Strength & Microstructure of Class-C fly Ash Activated in Waste Glass Based Alkaline Solution

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Suh, Dong Kyun;Lee, Yae Chan;Nam, Jeong Soo
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.136-137
    • /
    • 2021
  • The soda lime waste glass powder was dissolved in NaOH-4M solution to synthesize an alkaline activator, which was used to activate Class-C fly ash (FA). Compressive and flexural strength tests were conducted to determine the mechanical properties. Archimedes' principle was applied to measure the porosity of samples, (SEM-EDX) and XRD was used to study the microstructure and phase changes of samples. Through Inductive Coupled Plazma technique, the solution was found to increase the concentration of Si as the amount of dissolved glass powder was increased. Owing to the increased concentration of Si in an alkaline solution, the reactivity of FA was accelerated resulting in an increased strength and reduced porosity. Additionally, the dissolution of FA was improved as well as the formation of amorphous phases in the matrix was also enhances with the concentration of increased Si in an alkaline solution.

  • PDF

산 침출 시 실리카 광물의 용해 및 제거 (Dissolution and Removal of Silicates in Acid Leaching Process)

  • 박경호;남철우;김현호
    • 자원리싸이클링
    • /
    • 제24권1호
    • /
    • pp.3-11
    • /
    • 2015
  • 산 침출에 있어서 생성되는 가용성 실리카는 고액분리 시 여과를 어렵게 하고 목적금속의 순도를 저하시키는 등 습식제련공정에 있어서 큰 문제점으로 대두되고 있다. 따라서 본 고에서는 실리케이트 광물과 산과의 반응성, 가용성 실리카의 특성, 제거방법에 대하여 검토하였다. 가용성 실리카는 알카리 전처리에 의한 제거, 결정상태의 $SiO_2$로 변환, 응집 등의 방법을 통한 여과성 향상 등의 방법으로 처리할 수 있다.

Copper Electroplating on Mg Alloy in Pyrophosphate Solution

  • Van Phuong, Nguyen;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.124.1-124.1
    • /
    • 2016
  • In this work, uniform thickness and good adhesion of electrodeposited copper layer were achieved on AZ91 Mg alloy in alkaline noncyanide copper solution containing pyrophosphate ion by employing appropriate zincate pretreatment. Without zincate pretreatment, the electrodeposited copper layer on AZ91 Mg alloy was porous and showed poor adhesion which was explained by small number of nucleation sites of copper due to rapid dissolution of the magnesium substrate in the pyrophosphate solution. The zincate pretreatment was found as one of the most important steps that can form a conducting layer to cover AZ91 surface which decreased the dissolution rate of AZ91 Mg alloy about 40 times in the copper pyrophosphate solution. Electrodeposited copper layer on AZ91 Mg alloy after an appropriate zincate pretreatment showed good adhesion and uniform thickness with bright surface appearance, independent of the deposition time but the surface roughness of the electrodeposited copper layer increased with increasing Cu deposition time.

  • PDF

내포체 단백질 재생을 위한 용해 및 재접힘공정의 비교분석 (Comparative Analysis of Dissolution and Refolding Processes for Inclusion Body Protein Renaturation)

  • 김창성;김윤하;이은규
    • KSBB Journal
    • /
    • 제13권2호
    • /
    • pp.133-140
    • /
    • 1998
  • Using rlFN-$\alpha$ and rhGH as the model proteins, the refolding performances of the published processes were evaluated and compared. Key engineering parameters such as the type of denaturant and this concentration, protein concentration in the refolding buffer, and pH and ionic strength of the buffer were experimentally investigated. Furthermore, the role of a co-solvent of surfactant type in aggregation reduction was also studied. Of the denaturants tested (8M urea, 6M guanidine HCI, 0.5% SDS), SDS at alkaline pH (9.5) and ambient temperature gave the highest recovery yield. The SDS process was effective in the refolding of observed where dissolution proceeded better under lower strength (10 mM) but aggregation was suppressed under higher strength (>50 mM.) When PEG-4000 and/or Tween were added as co-solvent or refolding-enhancing additive, 1.6-2 times higher yield was realized. The‘masking’of the hyrophobic patches located on the surface of the protein with the surfactant molecules was believed to be responsible for the considerable reduction in aggregation during refolding.

  • PDF

알칼리형 연료전지의 수소극용 Co-Mo 및 Ni-Mo 금속간화합물 전극의 전기화학적 안정성 (Electrochemical Stability of Co-Mo and Ni-Mo Intermetallic Compound Electrodes for Hydrogen Electrode of Alkaline Fuel Cell)

  • 이창래;강성군
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.150-155
    • /
    • 1999
  • [ $H_2-O_2$ ] 알칼리형 연료전지용 수소극으로서 아크융해법으로 제조된 Brewer-Engel type의 Co-Mo$(35\;wt\%)$ 및 Ni-Mo$(35\;wt\%)$ 금속간화합물 전극의 전기화학적 안정성이 조사되었다. $N_2$가스로 용존산소를 제거한 $80^{\circ}C$ 6N KOH 전해질 내에서 금속간화합물 전극의 전기화학적 안정성에 미치는 전해질의 농도 및 온도의 영향이 조사되었다. 또한, AFC의 정상 작동조건하에서는 Co-Mo및 Ni-Mo전극의 전기화학적 안정성에 대한 분극전압(과전압)의 영향이 논의되었다. Co-Mo전극은 Ni-Mo전극에 비하여 낮은 전기화학적 안정성을 보였다. 수소가스 평형전위로부터 낮은 양분극 과전압 하에서 Co-Mo전극에서는 Co와 Mo의 용해가 동시에 일어났다. 그러나, Co는 Mo에 비하여 급격히 용해되었다 높은 양분극 과전압에서는 전극표면에 $Co(OH)_2$ 부동태 피막이 형성되었다. Ni-Mo전극의 경우에는 Mo의 용해반응이 치밀한 $Ni(OH)_2$, 부동태 피막형성에 의하여 억제되어 우수한 전기화학적 안정성을 보였다.

알긴산 나트륨이 장용코팅된 란소프라졸 제제의 저장안정성 및 용출률에 미치는 영향에 관한 연구 (The Effect of Sodium Alginate Coating on the Storage Stability and Dissolution Rate of Enteric Coated Lansoprazole)

  • 김정훈;오정민;강길선;정제교;이정식;정상영;이해방
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.277-284
    • /
    • 2002
  • Lansoprazole, pharmaceutics for acid-related diseases, is unstable in low pH environments and generally coated with enteric polymer to obtain gastroresistance in stomach. Because its storage stability is influenced by acidic substitutes of enteric polymer, alkaline chemicals wεre generally addεd to dosage form as a stabilizer. In this experience, we coated lansoprazole bead with sodium alginate and evaluated the effect of bead size and sodium alginate coating on the storage stability and dissolution profile of lansoprazole. Sodium alginate solution containing lansoprazole was sprayed as a droplet into 3% (w/v) $CaCl_2$ solution and the resultant bead was coated with starch, sodium alginate, and hydroxypropyl methylcellulose phthalate. The content of lansoprazole granule not coated with sodium alginate decreased to 57.96% of initial content when stored at a severe condition for 4 weeks, but that of lansoprazole granule coated with sodium alginate before enteric coating decreased little and as the thickness of sodium alginate film increased, the content of bead didn't decreased for 4 weeks. Sodium alginate film also improved the gastroresistance without much influencing the maximum dissolution rate.

황비철광(黃砒鐵鑛)과 방연광(方鉛鑛)의 혼합황화광(混合黃化鑛)의 알카리산화(酸化)에 의한 Pb침출(浸出) (Dissolution of Pb from the Complex Sulphide Concentrates Containing Galena and Arsenopyrite by Alkaline Oxidative Leaching)

  • 윤기병
    • 자원리싸이클링
    • /
    • 제17권3호
    • /
    • pp.42-47
    • /
    • 2008
  • 침출온도 $100^{\circ}C{\sim}140^{\circ}C$, 산소압력 $40psi{\sim}100psi$, NaOH농도 $0.5M{\sim}2M$ 범위의 침출조건에서 황비철광과 방연광의 혼합황화광의 알카리산화에 의한 Pb 침출실험이 수행되었다. 혼합황화광중의 방연광침출에는 침출용액중의 $OH^-$농도가 큰 영향을 미치며 낮은 $OH^-$농도의 침출용액에서는 침출반응의 진행에 따른 $OH^-$저하에 의하여 침출된 $HPbO_2^-$가 화합물로 다시 석출이 일어나서 침출율을 저하시킬 수 있다. 침출온도 $120^{\circ}C$, 산소압력 100psi, 침출시간 30분, NaOH 2M의 침출조건에서 처리한 침출잔사 중의 Pb함량이 가장 낮은 결과를 얻었다.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Cu ECMP 공정에서 전해액이 연마거동에 미치는 영향 (The Effect of Electrolytes on Polshing Behavior in Cu ECMP)

  • 권태영;김인권;김태곤;조병권;박진구
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.334-338
    • /
    • 2008
  • The purpose of this study is to characterize various electrolytes on electrochemical mechanical planarization (ECMP). The ECMP system was modified from conventional CMP system to measure the potentiodynamic curve and removal rate of Cu. The potentiodynamic curves were measured in static and dynamic states in investigated electrolytes using a potentiostat for the evaluation of the polishing behavior on ECMP. KOH (alkaline) and $NaNO_3$ (salt) were selected as electrolytes which have high conductivity. In static and dynamic states, the corrosion potential decreased and the corrosion current increased as a function of the electrolyte concentration. But, the electrochemical reaction was prevented by mechanical polishing effect in the dynamic state. The static etch and removal rate were measured as functions of concentration and applied voltage. When $NaNO_3$ was used, the dissolution was much faster than that of KOH. It was concluded that the removal rate was strongly depended on electrochemical dissolution. The removal rate increased up to 350 nm/min in $NaNO_3$ based electrolyte.

Effect of alkaline activators on the fresh properties and strength of silico-manganese fume-slag activated mortar

  • Nasir, Muhammad;Johari, Megat Azmi Megat;Yusuf, Moruf Olalekan;Maslehuddin, Mohammed;Al-Harthi, Mamdouh A.
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.403-416
    • /
    • 2020
  • This study investigated the effect of alkaline activators - NaOHaq (NH) (NH: 0-16 M) and Na2SiO3aq (NS) (NS/NH: 0-3.5) in the synthesis of silico-manganese fume (SMF) and ground blast furnace slag (BFS) blended alkali-activated mortar (AASB). The use of individual activator was ineffective in producing AASB of sufficient fresh and hardened properties, compared to the synergy of both activators. This may be attributed to incomplete dissolution and condensation of oligomers required for gelation of the binder. An inverse relationship was noted among the fresh properties and the NH concentration or NS/NH ratio. This was influenced by the dissolution and condensation of silicate monomers under polymerization process. The maximum 28-day strength of ~45 MPa, setting time of 60 min and flow of 182 mm was obtained with the use of combined activators (10M-NH and NS/NH=2.5). The combined activators at NS/10M-NH=2.5 constituted SiO2/Na2O, H2O/Na2O and H2O/SiO2 molar ratio of 1.61, 17.33 and 10.77, respectively. This facilitated the formation of C-S-H, C/K-A-S-H and C-Mn-S-H in the framework together with an increase in the crystallinity due to more silicate re-organization within the aluminosilicate chain. On comparison of the high concentrated with mild alkali synthesized product, it revealed that the concentration of OH- and Si monomers together with alkali metals influenced the dissolution of precursors and embedment of the constituent elements in the polymeric matrix. These factors eventually contributed to the microstructural densification of the mortar prepared with NS/10M-NH=2.5 thereby enhancing the compressive strength.