• Title/Summary/Keyword: alkali-silica reaction(ASR)

Search Result 53, Processing Time 0.026 seconds

A Experimental Study on the Alkali-Silica Reaction of Crushed Stones (Part 2 : The Influence of the Alkali Content and the Kind of Added Alkali to the Alkali-Silica Reaction) (쇄석 골재의 알칼리-실리카 반응에 관한 실험적 연구( 제 2보 : 첨가알칼리량 및 종류가 알칼리-실리카 반응에 미치는 영향))

  • 이영수;윤재환;정재동;노재호;이양수;조일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.108-112
    • /
    • 1993
  • The term Alkali-Silica Reaction (ASR) is used to describe a reaction between certain siliceous aggregates and hydroxyl ions present in the pore fluid of a concrete. The ASR is affected by the content of alkali, the particle size and the content of reactive aggregate, water-cement ratio, humidity, temperature and so on. In this paper, the fluence of alkali content and kind of added alkali to the ASR was studied. As a result, the more the content of alkali was increased, the more the mortar-bar was expand and the expansion of mortar-bar was showed differently with the added alkali kinds, The reaction products by ASR were observed by SEM(Scanning Electron Microscope) and analyzed by EDXA(Energy Dispersive X-ray Analysis) also and showed a gel composed of alkali(Na+, K+), silica and calcium.

  • PDF

Modelling of Alkali-Silica Reaction Effects on Mechanical Property Changes of Concrete

  • Kim, Jung Joong;Fan, Tai;Reda Tah, Mahmoud M.;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.42-45
    • /
    • 2015
  • Alkali-silica reaction (ASR) is a chemical reaction in concrete that alkalis in cement react with reactive silica in aggregate in the presence of water. When ASR takes place, it produces gels that absorb water and expand. Swelling of ASR gels can damage concrete and cause cracking and volume expansion in concrete structure. In this paper, mechanical consequences of ASR on concrete are simulated by a finite element (FE) analysis. An FE model of concrete is built. The evolution of concrete mechanical properties subjected to ASR is achieved by FE analyses. The constitutive model of concrete is attained via the FE analysis. A case study is used to demonstrate the proposed method. The simulated results using the proposed model are in good agreement with the observations of concrete with ASR reported in the literature. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

Effect of Waste Glass Fine Aggregate on Mechanical Properites and Alkali-Silica Reaction(ASR), After ASR Residual Mechanical Properties of High Strength Mortar (폐유리 잔골재가 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응(ASR), ASR 후, 잔류 역학적 특성에 미치는 영향)

  • Eu, Ha-Min;Kim, Gyu-Yong;Son, Min-Jae;Sasui, Sasui;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.31-32
    • /
    • 2020
  • This study measured the mechanical performance and residual strength of high strength/normal strength mortar mixed with waste glass fine aggregate after alkali-silica reaction and alkali-silica reaction. As a result, the effect of improving the slip phenomenon of the waste glass fine aggregate in the high-strength mortar was not significant, but rather the amount of ASR was increased.

  • PDF

A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The concrete pavement of the Seohae Highway in Korea has suffered from serious distress, only four to seven years after construction. Deterioration due to Alkali-Silica Reaction (ASR) has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the deterioration caused by an alkali-silica reaction of concrete pavement in Korea. The investigation methods included visual inspection and Automatic Road Analyzer (ARAN) analysis of surface cracks, coring for internal cracks, stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as follows: the crack pattern of the concrete pavement in Korea was longitudinal cracking, map cracking or D-cracking. Local areas of damage were noticed four to five years after construction. The cracks started from edges or joints and spread out to slabs. The most intensive cracking was observed at the intersection of the transverse and longitudinal joints. Where cracking was the most intense, pieces of concrete and aggregate had spalled away from top surface and joint interface area. The progress of deterioration was very fast. The reaction product of alkali-silica gel was clearly identified by its generally colorless, white, or very pale yellow hue seen through a stereo optical microscopy. The typical locations of the reaction product were at the interface between aggregate and cement paste in a shape of a rim, within aggregate particles in the cracks, and in the large void in the cement paste. Most of the white products were found at interface or internal aggregates. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe from alkali-silica reaction.

The Effect of the Residual Mortar of Recycled Concrete Aggregate on Alkali Silica Reaction (순환/재생골재의 잔류 모르타르 성분이 알칼리 실리카 반응성에 미치는 영향 평가)

  • Kim, Jeonghyun;Kim, Namho;Yang, Sungchul
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.19-24
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the effect of the residual mortar of recycled concrete aggregate on the expansion behavior during alkali silica reaction (ASR). METHODS: In order to evaluate the net effect of residual mortar on ASR expansion behavior, two aggregate samples with the same original virgin aggregate source but different residual mortar volumes were used. ASTM C1260 test was used to evaluate the ASR expansion behavior of these two aggregates and the original virgin aggregate. RESULTS: The greater the amount of residual mortar in recycled concrete aggregates, the less is the induced ASR expansion. Depending on the amount of residual mortar in recycled concrete aggregate, the ASR expansion of recycled concrete aggregate may be less than half of that of the original virgin aggregate. CONCLUSIONS: The residual mortar of recycled concrete aggregate may lead to the under estimation of the ASR expansion behavior of the original virgin aggregate.

Effect of the replacement rates of Waste Glass Fine Aggregate on the Mechanical Properties and Alkali - Silica Reaction of Mortars with different W/C Ratio - (폐유리 잔골재 대체율이 물시멘트비가 다른 모르타르의 역학적 특성 및 알칼리 -실리카 반응에 미치는 영향 -)

  • Eu, Ha-Min;Kim, Gyu-Yong;Nam, Jeong-Soo;Son, Min-Jae;Sasui, Sasui;Lee, Yae-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.195-196
    • /
    • 2020
  • This study evaluated the mechanical properties and alkali silica reaction of mortar according to the mixing ratio of waste glass. As a result, as the mixing ratio of the waste glass increased, the compressive and flexible strength of the mortar decreased due to the slip of aggregate, and the alkali-silica reaction(ASR) increased. So, it is considered that research is needed to prevent slip and ASR of the waste glass aggregate in order to use the waste glass as a fine aggregate for concrete.

  • PDF

An Experimental Study on the Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응에 관한 실험적 연구)

  • 윤재환;정재동;이영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 1994
  • This study was performed to investigate the Alkali-Silica Reaction(ASR) of crushed stones using chemical analysis, polarization microscope, XRD, chemical method(KS F 2545, ASTM C 289), mortar-bar method( KS F 2546, ASTM C 227) and Scanning Electron Microscope (SEM ) and Energy Dispersive X-ray Analysis(EDXA) of reaction products by ASK in the mortar bars and to investigate the influence on alkali content and kind of added alkali to the ASR. Test results show that one kind of domestic crushed stone is estimated as deleterious by ASTM chemical method and mortar bar method, and reaction product is proved as alkali silicate gel by EDXA.

Effect of Mechanical Restraint due to Steel Microfibers on Alkali-Silica Reaction in Mortars (미세 강섬유의 구속력이 모르타르의 알칼리-실리카 반응에 미치는 영향)

  • Yi, Chong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductively coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive pyrex rods in SMF mortars.

An Experimental Study on Alkali-Silica Reaction of Mortar Containing Waste Glass and By-products (폐유리 및 산업부산물을 혼입한 모르터의 ASR에 관한 실험적 연구)

  • Lee, Bong-Chun;Kwon, Hyuk-Joon;Kim, Jeong-Hwan;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.93-98
    • /
    • 2001
  • Using waste glass in concrete can cause crack and strength loss by the expansion of alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of clear waste glass grading, and by-products(fly ash, blast-furnace slag) and by-products content for reduction ASR expansion due to waste glass. In this accelerated ASTM C 1260 test of waste glass, pessimum grading can be found. Also, when the by-products are used with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass.

  • PDF

Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates (폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구)

  • 박승범;이봉춘;권혁준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2001
  • Incorporation of wastes glass aggregate in mortar may cause crack and this may result in the strength reduction due to alkali-silica reaction(ASR) and expansion. The purposes of this study were to investigate the properties of alkali-silica expansion and strength loss through a series of experiments which had a main experimental variables such as waste glass aggregate contents, glass colors, fiber types, and fiber contents. The steel fibers and polypropylene fibers were used for constraining the ASR expansion and mortar cracking. From the result, green waste glass was more suitable than brown one because of low expansion. And in this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass, the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only waste glass(80$\^{C}$ H$_2$O curing).