• Title/Summary/Keyword: alkali hydroxide

Search Result 218, Processing Time 0.023 seconds

Analysis of Internal Structure in Alkali-Activated Fire Protection Materials Using Fly ash (플라이애시를 활용한 알칼리 활성화 내화성 마감재의 내부구조 분석)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.104-112
    • /
    • 2012
  • This study involves investigating the correlation between variation of internal structure and heating temperature of alkali-activated fire protection materials using fly ash. Dehydration and micro crack thermal expansion occur in cement hydrates of cementitious materials heated by fire. Internal structure difference due to both the dehydration of cement hydrates and pore solution causes and influences changes in the properties of materials. Also, this study is concerned with change in microstructure and dehydration of the alkali-activated fire protection materials at high temperatures. The testing methods of alkali-activated fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. The study results show that the alkali-activated fire resistant finishing material composed of potassium hydroxide, sodium silicate and fly ash has the high temperature thermal stability. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction.

  • PDF

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

Dynamic and Durability Properties of the Low-carbon Concrete using the High Volume Slag (High Volume Slag를 사용한 저탄소 콘크리트의 역학 및 내구특성)

  • Moon, Ji-Hwan;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.351-359
    • /
    • 2013
  • Blast furnace slag (BFS) have many advantages that are related to effective value improvement on applying to concrete while side effects of blast furnace slag also appear. Thus, research team conducted an experiment with high volume slag to see if the attribute of waste alkali accelerator for mixing rate, mixed use of NaOH and $Na_2SiO_3$, and early strength agent for mixing rate for replacement ratio and for the types of the stimulants in order to increase the use of blast furnace slag1s powder. As the result of the experiment, when it comes to compression strength, all of the alkali stimulants have been improved as the replacement rate increases except for sodium hydroxide. Among the alkali stimulants, sodium silicate was high on dynamic elastic modulus and absorption factor. In case of early strength agent, the mix of mixing 1.5% and blast furnace slag 75% have showed high strength enhancement. In event of Waste Alkali accelerator, it has showed different consequences for each experiment.

A study on the zinc oxide crystalline powder synthesized by zinc chloride solution and sodium-based alkali precipitants (염화아연 수용액과 나트륨계 알칼리 침전제 종류에 따라 합성한 산화아연 결정 분말에 대한 연구)

  • Dae-Weon Kim;Dae-Hwan Jang;Bo-Ram Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • To prepare zinc oxide powder, three types of sodium-based alkali precipitants such as NaOH, Na2CO3, NaOH/NaHCO3 were compared to the differences in the manufacturing process of zinc oxide powder from zinc precipitate products like intermediates with the consideration of thermodynamic reaction. The prepared zinc precipitate products by the reaction with the sodium-based alkali precipitant were confirmed to respectively hydroxy zinc chloride (Zn5(OH)8Cl2·H2O) and zinc carbonate hydroxide (Zn5(OH)6(CO3)2·H2O) from XRD analysis. Zinc oxide particles were compared in heat treatment at 800℃ according to sodium-based alkali precipitants. The mixed NaOH and NaHCO3 of alkali precipitant reaction was contributed to synthesize the more uniform zinc oxide particles.

Migration of calcium hydroxide compounds in construction waste soil

  • Shin, Eunchul;Kang, Jeongku
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • Migration of leachate generated through embankment of construction waste soil (CWS) in low-lying areas was studied through physical and chemical analysis. A leachate solution containing soluble cations from CWS was found to have a pH above 9.0. To determine the distribution coefficients in the alkali solution, column and migration tests were conducted in the laboratory. The physical and chemical properties of CWS satisfied environmental soil criteria; however, the pH was high. The effective diffusion coefficients for CWS ions fell within the range of $0.725-3.3{\times}10^{-6}cm^2/s$. Properties of pore water and the amount of undissolved gas in pore water influenced advection-diffusion behavior. Contaminants migrating from CWS exhibited time-dependent concentration profiles and an advective component of transport. Thus, the transport equations for CWS contaminant concentrations satisfied the differential equations in accordance with Fick's 2nd law. Therefore, the migration of the contaminant plume when the landfilling CWS reaches water table can be predicted based on pH using the effective diffusion coefficient determined in a laboratory test.

An Experimental Study on the Compressive Strength of Concrete using Granulated Blast Furnace Slag (알칼리 활성 고로 슬래그 콘크리트의 압축강도 발현특성에 관한 실험적 연구)

  • Song, Jin-Kyu;Lee, Kang-Seok;Yang, Keun-Hyeok;Song, Ho-Bum;Kim, Bteong-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.555-556
    • /
    • 2009
  • The purpose of this study is to estimate compressive strength of concrete using granulated blast furnace slag. We used Sodium silicate, Potassium silicate, Barium hydroxide as alkali activators and Calcium hydroxide to develop water resistance.

  • PDF

NUTRITIVE EVALUATION OF SAGO FIBRE

  • Yadav, D.P.;Mahyuddin, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.177-182
    • /
    • 1991
  • Nutrient evaluation of sago fibre showed that the fibre has potential and could be utilized as feed for ruminants. However, as a source of nutrients, it has limitations arising from low intake, digestibility, crude protein and minerals content. The present study showed that the sago fibre is low in crude protein (3.3%) and high in neutral detergent fibre (72.5%) and acid detergent lignin (25.8%) contents. Treatment of sago fibre with urea increased the crude protein content from 3.3 to 16.7%. Both urea and sodium hydroxide treatment decreased the neutral detergent fibre level from 72.5 to 59 and 56.5%, respectively. Rumen degradation of sago fibre by nylon bag showed that both urea and sodium hydroxide treatments increased dry matter and organic matter disappearance of the fibre significantly. In vivo digestibility of 2% urea treated sago fibre was 47.5% and intake of the fibre was 1.57% of body weight of the lamb.

Impact of Alkali Pretreatment to Enzymatic Hydrolysis of Cork Oak (Quercus Variabilis) (알칼리 전처리가 굴참나무의 효소 당화에 미치는 영향)

  • Yoon, Su Young;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Dissolving part of xylan and lignin in lignocellulosic biomass by base can be used as pretreatment technique. Cork oak was pretreated with sodium hydroxide solution and the pretreatment effects were evaluated with two critical factors - NaOH concentration and pretreatment temperature. Some of xylan and lignin were removed by base pretreatment. At $90^{\circ}C$ and 13% NaOH pretreatment, 22.0% of lignin and 78.8% of xylan removed by base treatment. Enzymatic hydrolysis of cork oak which was pretreated at higher temperature or concentration was further improved. After pretreatment of cork oak with 13% NaOH at $90^{\circ}C$, the conversion rate of cellulose to fermentable sugars were reached up to 91.3%. At ethanol fermentation with enzymatic hydrolysate from different pretreatment conditions, all enzymatic saccharification liquids were well fermented by Saccharomyces cerevisiae.

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.78-90
    • /
    • 2012
  • Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.