DOI QR코드

DOI QR Code

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Choi, Myung-Suk (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Yang, Jae-Kyung (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2012.01.16
  • Accepted : 2012.03.23
  • Published : 2012.03.25

Abstract

Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.

Keywords

References

  1. Blasi, D. A., J. Drouillard, E. C. Titgemeyer, S. I. Paisley, and M. J. Brouk. 2000. Soybean hulls composition and feed value for beef and dairy cattle. Kansas State Univ Document 00-79-E.
  2. Bungay, H., M. Garcia, and B. Foody. 1983. Treatment and characterization of exploded woodfractions, Biotechnology and Bioengineering Symposium 13: 121-127.
  3. Canettieri, E. V., G. J. M. Rocha, J. A. Carvalho Jr., and J. B. A. Silva. 2007. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresource Technology 98 (2): 422-428.
  4. Cara, C., E. Ruiz, M. Ballesteros, P. Manzanares, M. J. Negro, and E. Castr. 2008. Production of fuel ethanol from steam-explosion pretreated olive tree. Fuel 87: 692-700. https://doi.org/10.1016/j.fuel.2007.05.008
  5. Carrillo, F., M. J. Lis, X. Colom, M. Lopez- Mesas, and J. Valldeperas. 2005. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: kinetic study, Process Biochemistry 40: 3360. https://doi.org/10.1016/j.procbio.2005.03.003
  6. Chen, H. Z. and L. Y. Liu. 2007. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresource Technology 98(3): 666-676. https://doi.org/10.1016/j.biortech.2006.02.029
  7. De Bari, I., E. Viola, D. Barisano, M. Cardinale, F. Nanna, F. Zimbardi, G. Cardinale, and G. Braccio. 2002. Ethanol Production at Flask and Pilot Scale from Concentrated Slurries of Steam- Exploded Aspen, Industrial and Engineering Chemistry Research 41: 1745-1753. https://doi.org/10.1021/ie010571f
  8. Dekker, R. and A. Wallis. 1983. Enzymic saccharification of sugarcane bagasse pretreated by autohydrolysis steam explosion, Biotechnology and Bioengineering 25: 3027-3048. https://doi.org/10.1002/bit.260251218
  9. Feist, W. C, A. J. Baker, and H. Tarkow. 1969. Alkali requirements for improving digestibility of hardwoods by rumen micro-organisms. Journal of Animal Science 30: 832-836.
  10. Fernandez-Bolanos, J., B. Felizon, A. Heredia, R. Guillen, and A. Jimenez. 1999. Bioresource Tech- nology, 68: 121-132. https://doi.org/10.1016/S0960-8524(98)00134-5
  11. Gharpuray, M. M., Y. H. Lee, and L. T. Fan. 1983. Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis, Biotechnology and Bioengineering 25: 157 -172. https://doi.org/10.1002/bit.260250113
  12. Gnanasambandan, R. and A. Proctor. 1999. Preparation of soy hull pectin. Food Chemistry 65: 461-467. https://doi.org/10.1016/S0308-8146(98)00197-6
  13. Gould, J. M. 1984. Alkaline peroxide delignification of agricultural residues to enhance enzymic saccharification. Biotechnology and Bioengineering 26: 46-52. https://doi.org/10.1002/bit.260260110
  14. Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Current Opinion in Chemical Biology 10: 1-6. https://doi.org/10.1016/j.cbpa.2006.01.015
  15. Grohmann, K., R. Torget, and M. Himmel. 1986. Optimization of dilute acid pretreatment of biomass. Biotechnology and Bioengineering Symposium 15: 59-80.
  16. Gruno, M., P. Vaeljamaee, G. Pettersson, and G. Johansson. 2004. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnology and Bioengineering 86: 503-511. https://doi.org/10.1002/bit.10838
  17. Ibrahim M. 1998. Clean fractionation of biomass- steam explosion and extraction. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  18. Jeoh, T. 1998. Steam explosion pretreatment of cotton gin waste for fuel ethanol production. Master's thesis, Virginia Tech. University, VA.
  19. Kaar, W. E., C. V. Gutierrez, and C. M. Kinoshita. 1998. Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol, Biomass and Bioenergy 14(3): 277-287. https://doi.org/10.1016/S0961-9534(97)10038-1
  20. Kabel, M. A., G. Bos, A. G. J J. Zeevalking, and H. A. Voragen. 2007. Schols Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw, Bioresource Technology 98: 2034-2042. https://doi.org/10.1016/j.biortech.2006.08.006
  21. Karunanithy, C. and K. Muthukumarappan. 2011. Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Industrial Crop and Products 33: 188-199. https://doi.org/10.1016/j.indcrop.2010.10.008
  22. Kim, J. W. and G. Mazza. 2008. Optimization of phosphoric acid catalyzed fractionation and enzymatic digestibility of flax shives. Industrial Crop and Products 28(3): 346-355. https://doi.org/10.1016/j.indcrop.2008.03.011
  23. Kim, T. H., J. S. Kim, C. Sun woo, and Y. Y. Lee. 2003. Pretreatment of corn stover by aqueous ammonia, Bioresource Technology 90: 39-47. https://doi.org/10.1016/S0960-8524(03)00097-X
  24. Kim, T. H. and Y. Y. Lee. 2006. Fractionation of corn stover by hot water and aqueous ammonia treatment, Bioresource Technology 97(2): 224 -232. https://doi.org/10.1016/j.biortech.2005.02.040
  25. Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, and G. Zacchi. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  26. Li, H. Q. and H. Z. Chen. 2008. Detoxification of steam-exploded corn straw produced by an industrial- scale reactor, Process Biochemistry 43: 1447-1451. https://doi.org/10.1016/j.procbio.2008.05.003
  27. Lu, X. B., Y. M. Zhang, J. Yang, and Y. Liang. 2007. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid, Chemical Engineering and Technology 30(7): 938-944. https://doi.org/10.1002/ceat.200700035
  28. Ma, H., W. W. Liu, X. Chen, Y. J. Wu, and Z. L. Yu. 2009. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology 100: 1279-1284. https://doi.org/10.1016/j.biortech.2008.08.045
  29. Mansfield, S. D., C. Mooney, and J. N. Saddler, 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis, Biotechnology Progress 15: 804-816. https://doi.org/10.1021/bp9900864
  30. McMillan, J. D. 1996. Hemicellulose conversion to ethanol. In: Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington, DC, USA.
  31. Monavari, S., M. Gable, and G. Zacchi. 2009. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis. Biotechnology for Biofuels 2: 1-9. https://doi.org/10.1186/1754-6834-2-1
  32. Neureiter, M., H. Danner, C. Thomasser, B. Saidi, and R. Braun. 2002. Dilute acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology 98: 49-58. https://doi.org/10.1385/ABAB:98-100:1-9:49
  33. Nguyen, Q. A., M. P. Tucker, F. A. Keller, and F. P. Eddy. 2000. Twostage dilute-acid pretreatment of softwoods. Applied Biochemistry and Biotechnology 84-86: 564-576.
  34. Palmqvist, E. and H. Hagerdal. 2000. Fer- mentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresource Tech- nology 74: 17-24. https://doi.org/10.1016/S0960-8524(99)00160-1
  35. Rahman, S. H. A., J. P. Choudhury, A. L. Ahmad, and A. H. Kamaruddin. 2007. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose, Bioresource Technology 98(3), 554-559. https://doi.org/10.1016/j.biortech.2006.02.016
  36. Ramos, J. P, C. Breuil, and J. N. Saddler. 1993. The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme and Microbial Technology 15: 19-25. https://doi.org/10.1016/0141-0229(93)90111-E
  37. Ritter, G., J. R. Seborg, and R. I. Mitchell. 1932. Factors affecting determination of lignin by 72% sulphuric acid method. Indian Engineering Chemical 4: 202-204.
  38. Ruiz, E., C. Cara, P. Manzanares, M. Ballesteros, and E. Castro. 2008. Evaluation of steam explosion pretreatment for enzymatic hydrolysis of sunflower stalks, Enzyme and Microbial technology 42: 160-166. https://doi.org/10.1016/j.enzmictec.2007.09.002
  39. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton. 2005. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. Available from: www. nrel.gov/biomass/analytical procedures.html.
  40. Soderstrom, J., L. Pilcher, M. Galbe, and G. Zacchi. 2002. Two-step steam pretreatment of softwood by $SO_{2}$ impregnation for ethanol production, Applied Microbiology and Biotechnology 2003. Biomass and Bioenergy 24: 475-486 https://doi.org/10.1016/S0961-9534(02)00148-4
  41. Spalt, H. A. 1977. Chemical changes in wood associated with wood fiberboard manufacture. In: Wood technology: chemical aspects, ACS Symp Series, Washington, USA 93: 193-219.
  42. Take, H., Y. Andou, Y. Nakamura, F. Kobayashi, Y. Kurimoto, and M. Kuwahara, 2006. Production of methane gas from Japanese cedar chips pretreated by various delignification methods, Biochemical Engineering Journal 28: 30-35. https://doi.org/10.1016/j.bej.2005.08.036
  43. Tan, H. T., K. T. Lee, and A. R. Mohamed. 2011. Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: an optimisation study using response surface methodology. Carbohydrate Polymers 83: 1862-1888. https://doi.org/10.1016/j.carbpol.2010.10.052
  44. Tarkow, H. and W. C. Feist. 1969. A Mechanism for Improving the Digestibility of lignocellulosic materials with dilute alkali and liquid $NH_{3}$ advance chemistry series 95, Washington, DC, American Chemical Society.
  45. Thomsen, M. H., A. Thygesen, and A. B. Thomsen. 2009. Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Applied Microbiology and Biotechnology 83(3): 447-455. https://doi.org/10.1007/s00253-009-1867-1
  46. Xin, L. and S. Saka. 2008. Optimization of Japanese beech hydrolysis treated with batch hotcompressed water by response surface methodology. International Journal Agricultural and Biological Engineering 1(2): 39-45.
  47. Yang, B., A. Boussaid, S. D. Mansfield, D. J. Gregg, and J. N. Saddler. 2002. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates, Biotechnology and Bioengineering 77: 678-684. https://doi.org/10.1002/bit.10159
  48. Zhu, J. J., Q. Yong, Y. Xu, and S. Yu. 2011. Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresource Technology 101: 1663-1668.
  49. Zhu, S., Y. Wu, Z. Yu, X. Zhang, C. Wang, and F. Yu. 2006. Production of ethanol from microwave- assisted alkali pretreated wheat straw, Process Biochemistry 41: 869-8733. https://doi.org/10.1016/j.procbio.2005.10.024