Browse > Article
http://dx.doi.org/10.5658/WOOD.2012.40.2.78

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery  

Jung, Ji-Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
Choi, Myung-Suk (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
Yang, Jae-Kyung (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.40, no.2, 2012 , pp. 78-90 More about this Journal
Abstract
Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.
Keywords
Soybean hull; pretreatment; steam explosion; potassium hydroxide; response surface methodology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gruno, M., P. Vaeljamaee, G. Pettersson, and G. Johansson. 2004. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnology and Bioengineering 86: 503-511.   DOI   ScienceOn
2 Ibrahim M. 1998. Clean fractionation of biomass- steam explosion and extraction. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
3 Jeoh, T. 1998. Steam explosion pretreatment of cotton gin waste for fuel ethanol production. Master's thesis, Virginia Tech. University, VA.
4 Kaar, W. E., C. V. Gutierrez, and C. M. Kinoshita. 1998. Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol, Biomass and Bioenergy 14(3): 277-287.   DOI   ScienceOn
5 Kabel, M. A., G. Bos, A. G. J J. Zeevalking, and H. A. Voragen. 2007. Schols Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw, Bioresource Technology 98: 2034-2042.   DOI   ScienceOn
6 Karunanithy, C. and K. Muthukumarappan. 2011. Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Industrial Crop and Products 33: 188-199.   DOI   ScienceOn
7 Blasi, D. A., J. Drouillard, E. C. Titgemeyer, S. I. Paisley, and M. J. Brouk. 2000. Soybean hulls composition and feed value for beef and dairy cattle. Kansas State Univ Document 00-79-E.
8 Bungay, H., M. Garcia, and B. Foody. 1983. Treatment and characterization of exploded woodfractions, Biotechnology and Bioengineering Symposium 13: 121-127.
9 Canettieri, E. V., G. J. M. Rocha, J. A. Carvalho Jr., and J. B. A. Silva. 2007. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresource Technology 98 (2): 422-428.
10 Cara, C., E. Ruiz, M. Ballesteros, P. Manzanares, M. J. Negro, and E. Castr. 2008. Production of fuel ethanol from steam-explosion pretreated olive tree. Fuel 87: 692-700.   DOI   ScienceOn
11 Carrillo, F., M. J. Lis, X. Colom, M. Lopez- Mesas, and J. Valldeperas. 2005. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: kinetic study, Process Biochemistry 40: 3360.   DOI   ScienceOn
12 Chen, H. Z. and L. Y. Liu. 2007. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresource Technology 98(3): 666-676.   DOI   ScienceOn
13 De Bari, I., E. Viola, D. Barisano, M. Cardinale, F. Nanna, F. Zimbardi, G. Cardinale, and G. Braccio. 2002. Ethanol Production at Flask and Pilot Scale from Concentrated Slurries of Steam- Exploded Aspen, Industrial and Engineering Chemistry Research 41: 1745-1753.   DOI   ScienceOn
14 Dekker, R. and A. Wallis. 1983. Enzymic saccharification of sugarcane bagasse pretreated by autohydrolysis steam explosion, Biotechnology and Bioengineering 25: 3027-3048.   DOI   ScienceOn
15 Feist, W. C, A. J. Baker, and H. Tarkow. 1969. Alkali requirements for improving digestibility of hardwoods by rumen micro-organisms. Journal of Animal Science 30: 832-836.
16 Fernandez-Bolanos, J., B. Felizon, A. Heredia, R. Guillen, and A. Jimenez. 1999. Bioresource Tech- nology, 68: 121-132.   DOI   ScienceOn
17 Thomsen, M. H., A. Thygesen, and A. B. Thomsen. 2009. Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Applied Microbiology and Biotechnology 83(3): 447-455.   DOI   ScienceOn
18 Take, H., Y. Andou, Y. Nakamura, F. Kobayashi, Y. Kurimoto, and M. Kuwahara, 2006. Production of methane gas from Japanese cedar chips pretreated by various delignification methods, Biochemical Engineering Journal 28: 30-35.   DOI   ScienceOn
19 Tan, H. T., K. T. Lee, and A. R. Mohamed. 2011. Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: an optimisation study using response surface methodology. Carbohydrate Polymers 83: 1862-1888.   DOI   ScienceOn
20 Tarkow, H. and W. C. Feist. 1969. A Mechanism for Improving the Digestibility of lignocellulosic materials with dilute alkali and liquid $NH_{3}$ advance chemistry series 95, Washington, DC, American Chemical Society.
21 Xin, L. and S. Saka. 2008. Optimization of Japanese beech hydrolysis treated with batch hotcompressed water by response surface methodology. International Journal Agricultural and Biological Engineering 1(2): 39-45.
22 Yang, B., A. Boussaid, S. D. Mansfield, D. J. Gregg, and J. N. Saddler. 2002. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates, Biotechnology and Bioengineering 77: 678-684.   DOI   ScienceOn
23 Nguyen, Q. A., M. P. Tucker, F. A. Keller, and F. P. Eddy. 2000. Twostage dilute-acid pretreatment of softwoods. Applied Biochemistry and Biotechnology 84-86: 564-576.
24 Zhu, J. J., Q. Yong, Y. Xu, and S. Yu. 2011. Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresource Technology 101: 1663-1668.
25 Zhu, S., Y. Wu, Z. Yu, X. Zhang, C. Wang, and F. Yu. 2006. Production of ethanol from microwave- assisted alkali pretreated wheat straw, Process Biochemistry 41: 869-8733.   DOI   ScienceOn
26 Neureiter, M., H. Danner, C. Thomasser, B. Saidi, and R. Braun. 2002. Dilute acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology 98: 49-58.   DOI   ScienceOn
27 Palmqvist, E. and H. Hagerdal. 2000. Fer- mentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresource Tech- nology 74: 17-24.   DOI   ScienceOn
28 Rahman, S. H. A., J. P. Choudhury, A. L. Ahmad, and A. H. Kamaruddin. 2007. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose, Bioresource Technology 98(3), 554-559.   DOI   ScienceOn
29 Ramos, J. P, C. Breuil, and J. N. Saddler. 1993. The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme and Microbial Technology 15: 19-25.   DOI   ScienceOn
30 Ritter, G., J. R. Seborg, and R. I. Mitchell. 1932. Factors affecting determination of lignin by 72% sulphuric acid method. Indian Engineering Chemical 4: 202-204.
31 Spalt, H. A. 1977. Chemical changes in wood associated with wood fiberboard manufacture. In: Wood technology: chemical aspects, ACS Symp Series, Washington, USA 93: 193-219.
32 Ruiz, E., C. Cara, P. Manzanares, M. Ballesteros, and E. Castro. 2008. Evaluation of steam explosion pretreatment for enzymatic hydrolysis of sunflower stalks, Enzyme and Microbial technology 42: 160-166.   DOI   ScienceOn
33 Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton. 2005. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. Available from: www. nrel.gov/biomass/analytical procedures.html.
34 Soderstrom, J., L. Pilcher, M. Galbe, and G. Zacchi. 2002. Two-step steam pretreatment of softwood by $SO_{2}$ impregnation for ethanol production, Applied Microbiology and Biotechnology 2003. Biomass and Bioenergy 24: 475-486   DOI   ScienceOn
35 Kim, J. W. and G. Mazza. 2008. Optimization of phosphoric acid catalyzed fractionation and enzymatic digestibility of flax shives. Industrial Crop and Products 28(3): 346-355.   DOI   ScienceOn
36 Kim, T. H., J. S. Kim, C. Sun woo, and Y. Y. Lee. 2003. Pretreatment of corn stover by aqueous ammonia, Bioresource Technology 90: 39-47.   DOI   ScienceOn
37 Kim, T. H. and Y. Y. Lee. 2006. Fractionation of corn stover by hot water and aqueous ammonia treatment, Bioresource Technology 97(2): 224 -232.   DOI   ScienceOn
38 Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, and G. Zacchi. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology 24: 151-159.   DOI   ScienceOn
39 Li, H. Q. and H. Z. Chen. 2008. Detoxification of steam-exploded corn straw produced by an industrial- scale reactor, Process Biochemistry 43: 1447-1451.   DOI   ScienceOn
40 Lu, X. B., Y. M. Zhang, J. Yang, and Y. Liang. 2007. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid, Chemical Engineering and Technology 30(7): 938-944.   DOI   ScienceOn
41 Ma, H., W. W. Liu, X. Chen, Y. J. Wu, and Z. L. Yu. 2009. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology 100: 1279-1284.   DOI   ScienceOn
42 Mansfield, S. D., C. Mooney, and J. N. Saddler, 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis, Biotechnology Progress 15: 804-816.   DOI   ScienceOn
43 McMillan, J. D. 1996. Hemicellulose conversion to ethanol. In: Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington, DC, USA.
44 Monavari, S., M. Gable, and G. Zacchi. 2009. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis. Biotechnology for Biofuels 2: 1-9.   DOI   ScienceOn
45 Gharpuray, M. M., Y. H. Lee, and L. T. Fan. 1983. Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis, Biotechnology and Bioengineering 25: 157 -172.   DOI   ScienceOn
46 Gnanasambandan, R. and A. Proctor. 1999. Preparation of soy hull pectin. Food Chemistry 65: 461-467.   DOI   ScienceOn
47 Gould, J. M. 1984. Alkaline peroxide delignification of agricultural residues to enhance enzymic saccharification. Biotechnology and Bioengineering 26: 46-52.   DOI   ScienceOn
48 Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Current Opinion in Chemical Biology 10: 1-6.   DOI   ScienceOn
49 Grohmann, K., R. Torget, and M. Himmel. 1986. Optimization of dilute acid pretreatment of biomass. Biotechnology and Bioengineering Symposium 15: 59-80.