• Title/Summary/Keyword: alizarin red

Search Result 135, Processing Time 0.029 seconds

Effect of Gallus gallus var. domesticus (Yeonsan ogolgye) Extracts on Osteoblast Differentiation and Osteoclast Formation (연산 오골계 물 추출물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.322-329
    • /
    • 2015
  • The effects of water extracts of Gallus gallus var. domesticus (Yeonsan ogolgye, GD) on the activities of osteoblast differentiation and the restraint of osteoclast formation were investigated. The water extract of GD in the human osteoblast "MG-63" cell, was examined in relation to alkaline phosphatase (ALP) activity and alizarin red stains. In order to observe the effects of osteoclasts formation, we analyzed RAW 264.7 cell tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains. The ALP activity of the water extract of hen and cock flesh (3 years) were 133.8% and 129.6%, respectively. The ALP activity of flesh extracts was also higher than that of the skin extracts. Concerning the effects of age, the 3 years old flesh extracts had a higher activity than that of the one year old extracts. However the activity of the 3 years old skin extracts was lower than that of the one year old extracts. For gender conditions, the ALP activity of the hen extract was higher than that of the cock. The degree bone mineralization in the three years old hen flesh exhibited the highest rate, at 124.3%, amongst all the groups. The TRAP activity of the flesh extracts of the three years old cock revealed the lowest rate, at 31.8%, compared to the control. Our results demonstrate that the water extract of GD increases bone mineralization and osteoblast differentiation activity in MG-63 cells and enhances the inhibitory activity of bone-resorption in RAW 264.7 cells. In conclusion, the water extracts of GD seem to be effective in the prevention and treatment of bone related disorders.

A BIOACTIVITY STUDY OF PORTLAND CEMENT MIXED WITH β-GLYCEROPHOSPHATE ON HUMAN PULP CELL (β-glycerophosphate 혼합시 인간 치수 세포에 대한 Portland cement의 생활성에 관한 연구)

  • Oh, Young-Hwan;Jang, Young-Joo;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.415-423
    • /
    • 2009
  • The purpose of this study is to investigate the response of human pulp cell on Portland cement mixed with $\beta$-glycerophosphate. To investigate the effect of $\beta$-glycerophosphate and/or dexamethasone on human pulp cell, ALP activity on various concentration of $\beta$-glycerophosphate and dexamethasone was measured and mineral nodule of human pulp cell was stained with Alizarin red S. MTS assay and ALP activity of human pulp cell on Portland cement mixed with various concentration of $\beta$-glycerophosphate (10 mM, 100mM, 1M) was measured and the specimens were examined under SEM. Addition of $\beta$-glycerophosphate or dexamethasone alone had no effect however, the addition of 5 mM $\beta$-glycerophosphate and 100 nM dexamethasone had the largest increasement in ALP activity. There was no toxicity in all samples and the data showed that Portland cement mixed with 10 mM $\beta$-glycerophosphate had more increase in ALP activity compared with control. In conclusion, Portland cement mixed with $\beta$-glycerophosphate has no toxicity and promotes differentiation and mineralization of pulp cell compared with additive-free Portland cement. This implicated that application of Portland cement mixed with $\beta$-glycerophosphate might form more reparative dentin and in turn it would bring direct pulp capping to success.

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering

  • Hokmabad, Vahideh Raeisdasteh;Davaran, Soodabeh;Aghazadeh, Marziyeh;Alizadeh, Effat;Salehi, Roya;Ramazani, Ali
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.735-750
    • /
    • 2018
  • BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica ($n-SiO_2$) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and $n-SiO_2$ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with $n-SiO_2$. While the hydrophilicity of $n-SiO_2$ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to $n-SiO_2$ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and $n-SiO_2$. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.

Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Zinc (Zn) is an essential trace element for bone mineralization and osteoblast function. We examined the effects of Zn deficiency on osteoblast differentiation and mineralization in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured at concentration of 1 to $15{\mu}M$ $ZnCl_2$ (Zn- or Zn+) for 5, 15 and 25 days up to the calcification period. Extracellular matrix mineralization was detected by staining Ca and P deposits using Alizarin Red and von Kossa stain respectively, and alkaline phosphatase (ALP) activity was detected by ALP staining and colorimetric method. Results: Extracellular matrix mineralization was decreased in Zn deficiency over 5, 15, and 25 days. Similarly, staining of ALP activity as the sign of an osteoblast differentiation, was also decreased by Zn deficiency over the same period. Interestingly, the gene expression of bone-related markers (ALP, PTHR; parathyroid hormone receptor, OPN; osteopontin, OC; osteocalcin and COLI; collagen type I), and bone-specific transcription factor Runx2 were downregulated by Zn deficiency for 5 or 15 days, however, this was restored at 25 days. Conclusion: Our data suggests that Zn deficiency inhibits osteoblast differentiation by retarding bone marker gene expression and also inhibits bone mineralization by decreasing Ca/P deposition as well as ALP activity.

A histological study on the development of scapula in the Korean native cattle (한우 태자의 견갑골 발생에 관한 조직학적 연구)

  • Park, Moon-euk;Yang, Hong-hyun;Paik, Young-ki;Lee, Han-kyoung
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 1992
  • This study was undertaken to establish the sequence of development of ages and its time of the fetal endochondral ossification in the scapula of the Korean native cattle. This study was also designed to confirm through histological observation the earliest stages of both chondrification and ossification. Thirty eight scapulae, a series of embryos and fetuses from the pregnant Korean native cattle ranging from 11 to 110mm in crown-rump (C-R) length, were used. The following results were obtained. The ossification center was observed in the supra- and infra- spinous fossa in the 5th group (CRL 51-60mm), that was markedly ossified in the 6th group (CRL 61~70mm) by Alizarin red S stain. The chondrogenic center of scapula was observed in the 1st group (CRL 11~20mm). The primary ossification center was presented in the 4th group (CRL 41~50mm). In the 5th group(CRL 51~60mm), the endochondral ossification progressed actively. Alcianophility was markedly increased in the interterritorial matrix in the 3rd group (CRL 31~40mm. However this reaction was markedly decreased in the interterritorial matrix the adjacent portion to the marrow cavity and trabecula in the 5th group (CRL 51~60mm).

  • PDF

The Toxicological Effects of Ahnjon-Yichun-Tang in Pregnant Rats and Fetuses (안존이천탕 추출물이 흰쥐의 모체 및 태자에 미치는 영향)

  • Kim, Bum Hoi
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.157-168
    • /
    • 2013
  • The objective of this study was to characterize the adverse effects of Ahnjon-Yichun-Tang during early pregnancy. Following successful mating, female Sprague-Dawley rats were given Ahnjon-Yichun-Tang(AYT) extract by oral administration daily with dose of 150mg (n=10), 300mg(n=10), 450mg(n=10) for 20 days of pregnancy. The rats in Control group(n=10) were orally administrated with Saline. All pregnant rats of Ahnjon-Yichun-Tang-treated and Control groups were sacrificed on day 20 of pregnancy. The pregnancy outcome was determined and the internal and reproductive organs of pregnant rat were observed. The fetuses were examined for the presence of various developmental toxic endpoints and stained with alcian blue and alizarin red S, and observed skeletal malformations. The results obtained in this study represent that there is no significant changes between Control and Ahnjon-Yichun-Tang-treated groups in body weight, organ weight, blood chemistry values, hematological values and pregnancy indexes of pregnant rat. The skeletal malformation of fetus was not observed as well. These results suggest that oral administration of Ahnjon-Yichun-Tang does not produce either maternal or developmental toxicity.

Osteogenic Differentiation Potential in Parthenogenetic Murine Embryonic Stem Cells

  • Kang, Ho-In;Cha, Eun-Sook;Choi, Young-Ju;Min, Byung-Moo;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.91-95
    • /
    • 2008
  • Embryonic stem cells have a pluripotency and a potential to differentiate to all type of cells. In our previous study, we have shown that embryonic stem cells (ESCs) lines can be generated from murine parthenogenetic embryos. This parthenogenetic ESCs line can be a useful stem cell source for tissue repair and regeneration. The defect in full-term development of parthenogenetic ESCs line enables researchers to avoid the ethical concerns related with ESCs research. In this study, we presented the results demonstrating that parthenogenetic ESCs can be induced into osteogenic cells by supplementing culture media with ascorbic acid and $\beta$-glycerophosphate. These cells showed morphologies of osteogenic cells and it was proven by Von Kossa staining and Alizarin Red staining. Expression of marker genes for osteogenic cells (osteopontin, osteonectin, alkaline phosphatase, osteocalcin, bone-sialoprotein, collagen type1, and Cbfa1) also confirmed osteogenic potential of these cells. These results demonstrate that osteogenic cells can be generated from parthenogenetic ESCs in vitro.

AN EXPERIMENTAL STUDY ON EFFECT OF RADIATION IN PALATE DEVELOPMENT OF RAT EMBRYO (방사선조사시 태내백서의 구개형성기에 미치는 영향에 관한 실험적 연구)

  • Khim Jhai Dhuck
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1976
  • The author observed morphological change in palate development of rat embryo after irradiation of x-ray on the one side of the duplex uterus. The time-matings occured between 6 p.m. and 8 p.m. and all females with copulation plugs at 8 a.m. were isolated and properly marked for evidence of copulation. The lower left abdomen of mothers were exposed to x-radiation on the 7 1/2th, 9 1/2th, 11 1/2th day of gestation, respectively 150, 250, 350, 500rads. At 18 1/2th day of post-conception, the pregnant females were dissected and the contents of the two uteri examined. The translucent sample by Alizarin red S stain were prepared. The results were as follows; 1. The result that groups irradiated by 250rads and 350rads made marked difference in comparison with the control group suggests the x-ray to be a inducing factor of cleft palate. 2. At 11 1/2th day of gestation, incidence of cleft palate induced by x-irradiation was highest. 3. Mortality showed the highest frequency at 7 1/2th day of gestation and tended to decrease in according to increasing of age. 4. Morphology of cleft palate induced by x-irradiation showed similarity in comparison with those induced by other factors having reported ever.

  • PDF

EXPERIMENTAL STUDY ON THE EFFECT OF RADIATION IN THE SECONDARY PALATE FORMATION. (방사선조사가 구강형성기에 미치는 영향에 관한 실험적 연구)

  • You Dong Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 1977
  • The author observed the effect of X-ray irradiation on the secondary palate formation of the rat fetuses. The mothers were exposed to X-radiation on the 10½th, 11½th and 12½th day of gestation with respectively 150, 200, 250, 300 and 350 rads. The fetuses were removed from mothers on 15½h, 16½th and 18½th day of gestation. Morphological changes in palate formation were examined and histochemical preparations were made. 1. In control fetuses, the secondary palates were fully developed on the 15½th to 18½th day of gestation. But in experimental fetuses, many cleft palates were observed in accordance with increase of X-radiation dose. 2. Frequency of incidence of horizontal position of both palated shelves in cleft palate was highest. 3. Accordig to the dislocation of palatal processes, the stain ability of palatal crest was varied. 4. The thickened area of palatal epithelium of palatal crest showed intense methyl green-pyronin and PAS reaction 5. Mesenchymal cell condensation was appeared under the thickened epithelium of palatal process and this mesenchymal tissue showed strong colloidal iron reaction. 6. The stain ability of alizarin red S and alkaline phosphatase reaction of tectal ridge were decreased, in accordance with increase of irradiation doses.

  • PDF