• Title/Summary/Keyword: alignment accuracy

Search Result 300, Processing Time 0.025 seconds

Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine

  • Kim, Jong-Kyoung;Raghava, G. P. S.;Kim, Kwang-S.;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.158-166
    • /
    • 2004
  • Predicting the destination of a protein in a cell gives valuable information for annotating the function of the protein. Recent technological breakthroughs have led us to develop more accurate methods for predicting the subcellular localization of proteins. The most important factor in determining the accuracy of these methods, is a way of extracting useful features from protein sequences. We propose a new method for extracting appropriate features only from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine (SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reach 94.70% for the eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which show the highest prediction accuracy among methods reported so far with such data sets. Our numerical experimental results confirm that our feature extraction method based on pairwise sequence alignment, is useful for this classification problem.

  • PDF

A Study of Spacecraft Alignment Measurement with Theodolite (데오도라이트를 이용한 위성체 얼라인먼트 측정에 관한 연구)

  • Yun,Yong-Sik;Park,Hong-Cheol;Son,Yeong-Seon;Choe,Jong-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.105-111
    • /
    • 2003
  • A measurement of spacecraft alignment is an important process of spacecraft assembly, integration and test. Because, it is necessary that a operator of a ground station controls the precise positions of on-orbit spacecraft by using the alignment data of attitude orbit control sensors(AOCS) on spacecraft. And, an accuracy of spacecraft alignment requirement is about $0.1^{\circ}{\sim}0.7^{\circ}$. A spacecraft alignment is measured by autocollimation of theodolite. This paper describes the measurement principle and method of spacecraft alignment. The result shows that all the AOCS on the spacecraft are aligned within the tolerance required through the alignment measurement.

Self-Alignment and Bonding of Microparts Using Adhesive Droplets

  • Sato, Kaiji;Lee, Keun-Uk;Nishimura, Masahiko;Okutsu, Kazutoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.75-79
    • /
    • 2007
  • This paper describes the self-alignment and bonding of microparts using adhesive surface tension to assemble microsystems in air. The alignment and bonding were tested experimentally using adhesive droplets, and the resulting performance was evaluated. The adhesive, which was inorganic and water-soluble before hardening, was diluted with water to a ratio of 10:1 so that its surface tension generated a sufficient restoring force for self-alignment. The experimental results showed that the average of the alignment errors obtained using the adhesive on $1.0\times1.0\times0.15-mm$ microparts was less than $2{\mu}m$ in the X and Y directions and 0.2 degrees in the e direction. These alignment errors were almost the same as those obtained using water. The use of a suitable adhesive had no negative effects on the alignment accuracy. The average tensile strength of the adhesive bond after self-alignment was $0.61N/mm^2$.

Design of an Initial Fine Alignment Algorithm for Satellite Launch Vehicles

  • Song, Eun-Jung;Roh, Woong-Rae;Kim, Jeong-Yong;Oh, Jun-Seok;Park, Jung-Ju;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.184-192
    • /
    • 2010
  • In this paper, an initial fine alignment algorithm, which is developed for the strap-down inertial navigation systems of satellite launch vehicles, is considered. For fast and accurate alignment, a simple closed-loop estimation algorithm using a proportional-integral controller is introduced. Through computer simulation for the sway condition in the launch pad, it is shown that a simple filter structure can guarantee fast computational speed that is adequate for real-time implementation as well as the required alignment accuracy and robustness. In addition, its implementation results are presented for the Naro-1 flight test.

Compensation of Ultra-Precision Tool Position for Alignment Error (초정밀 공구 위치설정 오차의 보정)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.71-75
    • /
    • 2007
  • Geometrical error of ultra-precision machining due to spherical tool alignment error is analyzed. Deviation of spherical edge, ranged several ten micrometers, generates vertical and horizontal error of tool path and affects profile accuracy of machined surface. Simulation of machined error shows effect of tool alignment error and enables to estimate alignment error. This work provides technical insights into the minimizing of geometrical error of ultra-precision machining.

  • PDF

Double-Pitch Dual Grating Method for Detecting the Axial Offset in Roll System (2 배수 피치비를 갖는 이중 격자 측정법을 이용한 축방향 롤 회전 오차 측정)

  • Kim, Geehong;Ten, Aleksey-Desen;Lim, Hyungjun;Lee, Jaejong;Choi, Keebong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1273-1279
    • /
    • 2013
  • We propose a dual grating alignment technique for roll-to-roll positioning which allows achieving nanometer scale alignment by using micro-size marks. The high precision alignment system were designed and manufactured. It was confirmed that the optical system was properly adjusted and fully aligned with the dual gratings. The experiment and computer simulation results were presented. Alignment accuracy below 50 nm was achieved.

Application of GPS Surveying for Extracting Highway's Horizontal Alignment

  • Seo, Jeong-Hoon;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Korea is a small country with relatively large mountainous areas and has many difficulties from planning to completing one road. Maintaining a completed road presents even more difficulties. presently, in estimating design elements, the result varies according to the engineer and there are many cases that question the reliability of the results. Therefore, in this study, the alignment of highway was sampled using by the centerline path, the design elements of horizontal alignment were reduced by applying the Least Squares Method, and the accuracy was analyzed. By this method, IP, IA, R, $\Delta$R and A-parameter were also determined. By observing relatively long straight sections, the approximate values could be estimated, and particularly, the considerably accurate value of A-parameter was determined. This study, using the Least Squares Method, aims to contribute to the development of the alignment examination in frequent traffic accident regions.

  • PDF

Development of Horizontal Alignment Information System of Road Using Digital Photogrammetry (수치사진측량을 이용한 도로평면선형정보체계 개발)

  • 서동주;이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.347-353
    • /
    • 2003
  • Lately, Digital Photogrammetry has been increasingly applied to various hightech industries and becomes one of more interesting focuses of study than ever. Thus, this study aims to develop a Road Horizontal Alignment Information System by means of digital photogrammetry. Data acquired from digital photographic techniques were processed using Delphi, an object oriented programming language to develop a computer aided program, that allows us to build the information on Road Horizontal Alignment(Beginning Point of Curve, Ending Point of Curve, Radius, Intersection Point). The developed program could maximize visualization for better analysis compared with traditional programs because it utilizes many image data. Comparing with data from traditional horizontal alignment extraction programs based on the principle of least square method, the data acquired by Horizontal Alignment Information and kinematic GPS showed out of the developed road information systems the improved accuracy of IP value up to about 2m in the direction of X, Y axes, where the accuracy of curve radius(R) becomes enhanced up to about 2.5 m.

Tool Alignment and Machining Accuracy in Micro End Milling (마이크로 머시닝에서의 공구 정렬과 가공정밀도)

  • An, Ju Eun;Lee, Sung Ho;Kwak, Jae Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • A micro end mill is one of the precise tools used in machining ultra-precision products such as microchannel and micropatterned mold. To achieve the required precision of these products, several studies investigated the cutting force, burr formation, and burr generation mechanism of micro end mills; however, there are few studies on the alignment of micro tools, which is the foundation of machining. Hence, in this investigation, relation expressions were derived to determine the relation between the misalignment parameters and the machining accuracy. At the same time, the effect of the machining parameters was analyzed using a multiple linear regression analysis and the analysis of variance. The results indicate that the tilting angle of a micro tool has more influence on the machining accuracy than other parameters.

A Analysis of Highway′s Horizontal Alignment Using Kinematic GPS Surveying (동적 GPS 관측에 의한 도로의 평면선형 분석)

  • 이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • The design of highway in the future should be convenient using of a high-technology information, and it needs the design of alignment that is able to find the maximum vehicles inducement function fitting into Car Navigation System. Well then, the alignment of the existent highway needs to be analyzed with accuracy for improving design of existent highway, and it needs the design drawing of existent highway, and coordinates of the main point. This study gets data of the alignment of highway economically by Kinematic GPS surveying to analyze the alignment of existent highway, and horizontal alignment of highway is analyzed by this data. The result of study is included within range practical error, and alignment analysis can be known that there is practical.

  • PDF