• Title/Summary/Keyword: algorithm expression

Search Result 516, Processing Time 0.027 seconds

Consensus Clustering for Time Course Gene Expression Microarray Data

  • Kim, Seo-Young;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.335-348
    • /
    • 2005
  • The rapid development of microarray technologies enabled the monitoring of expression levels of thousands of genes simultaneously. Recently, the time course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. For the data, biologists are attempting to group genes based on the temporal pattern of their expression levels. We apply the consensus clustering algorithm to a time course gene expression data in order to infer statistically meaningful information from the measurements. We evaluate each of consensus clustering and existing clustering methods with various validation measures. In this paper, we consider hierarchical clustering and Diana of existing methods, and consensus clustering with hierarchical clustering, Diana and mixed hierachical and Diana methods and evaluate their performances on a real micro array data set and two simulated data sets.

A Facial Expression Recognition Method Using Two-Stream Convolutional Networks in Natural Scenes

  • Zhao, Lixin
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.399-410
    • /
    • 2021
  • Aiming at the problem that complex external variables in natural scenes have a greater impact on facial expression recognition results, a facial expression recognition method based on two-stream convolutional neural network is proposed. The model introduces exponentially enhanced shared input weights before each level of convolution input, and uses soft attention mechanism modules on the space-time features of the combination of static and dynamic streams. This enables the network to autonomously find areas that are more relevant to the expression category and pay more attention to these areas. Through these means, the information of irrelevant interference areas is suppressed. In order to solve the problem of poor local robustness caused by lighting and expression changes, this paper also performs lighting preprocessing with the lighting preprocessing chain algorithm to eliminate most of the lighting effects. Experimental results on AFEW6.0 and Multi-PIE datasets show that the recognition rates of this method are 95.05% and 61.40%, respectively, which are better than other comparison methods.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

Development of Experimental Guide Materials for Algorithmic Expression - Focusing on Magnetic Properties Experiment - (알고리즘 표현의 실험 안내 자료 개발 - 자석의 성질 실험을 중심으로 -)

  • Kang, Eunju;Kim, Jina
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.3
    • /
    • pp.326-342
    • /
    • 2021
  • In this study, experimental guide materials for teachers were developed so that algorithm expression, the core of computational thinking, can be applied to experimental activities. The experimental manuals presented in text was converted into an algorithmic form with a linear, branched, and repetitive structure according to the information visualization process using flowchart symbols. As an example, an experiment guide materials was developed by applying an algorithm expression to an experiment to find out the properties of a magnet. The developed experiment guide materials is different from the existing experiment guide materials expressed only sequentially in that it has an algorithmic structure of branching and repetition in which the suitability and judgment of information are expressed, and that the experiment process is visualized and expressed. It is expected that the experimental guide materials developed in this study will help teachers to understand algorithmic thinking and to implement experiments using it.

An Iterative Normalization Algorithm for cDNA Microarray Medical Data Analysis

  • Kim, Yoonhee;Park, Woong-Yang;Kim, Ho
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • A cDNA microarray experiment is one of the most useful high-throughput experiments in medical informatics for monitoring gene expression levels. Statistical analysis with a cDNA microarray medical data requires a normalization procedure to reduce the systematic errors that are impossible to control by the experimental conditions. Despite the variety of normalization methods, this. paper suggests a more general and synthetic normalization algorithm with a control gene set based on previous studies of normalization. Iterative normalization method was used to select and include a new control gene set among the whole genes iteratively at every step of the normalization calculation initiated with the housekeeping genes. The objective of this iterative normalization was to maintain the pattern of the original data and to keep the gene expression levels stable. Spatial plots, M&A (ratio and average values of the intensity) plots and box plots showed a convergence to zero of the mean across all genes graphically after applying our iterative normalization. The practicability of the algorithm was demonstrated by applying our method to the data for the human photo aging study.

Realtime Facial Expression Control and Projection of Facial Motion Data using Locally Linear Embedding (LLE 알고리즘을 사용한 얼굴 모션 데이터의 투영 및 실시간 표정제어)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.117-124
    • /
    • 2007
  • This paper describes methodology that enables animators to create the facial expression animations and to control the facial expressions in real-time by reusing motion capture datas. In order to achieve this, we fix a facial expression state expression method to express facial states based on facial motion data. In addition, by distributing facial expressions into intuitive space using LLE algorithm, it is possible to create the animations or to control the expressions in real-time from facial expression space using user interface. In this paper, approximately 2400 facial expression frames are used to generate facial expression space. In addition, by navigating facial expression space projected on the 2-dimensional plane, it is possible to create the animations or to control the expressions of 3-dimensional avatars in real-time by selecting a series of expressions from facial expression space. In order to distribute approximately 2400 facial expression data into intuitional space, there is need to represents the state of each expressions from facial expression frames. In order to achieve this, the distance matrix that presents the distances between pairs of feature points on the faces, is used. In order to distribute this datas, LLE algorithm is used for visualization in 2-dimensional plane. Animators are told to control facial expressions or to create animations when using the user interface of this system. This paper evaluates the results of the experiment.

Closed-Form Expression of Approximate ML DOA Estimates in Bistatic MIMO Radar System (바이스태틱 MIMO 레이다 시스템에 적용되는 ML 도래각 추정 알고리즘의 근사 추정치에 대한 Closed-Form 표현)

  • Paik, Ji Woong;Kim, Jong-Mann;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.886-893
    • /
    • 2017
  • Recently, for detection of low-RCS targets, bistatic radar and multistatic radar have been widely employed. In this paper, we present the process of deriving the received signal modeling of the bistatic MIMO radar system and deals with the performance analysis of applying the bistatic signal to the ML arrival angle estimation algorithm. In case of the ML algorithm, as the number of the targets increases, azimuth search dimension for DOA estimation also increases, which implies that the ML algorithm for multiple targets is computationally very intensive. To solve this problem a closed-form expression of estimation error is presented for performance analysis of the algorithm.

Analysis of Understanding Using Deep Learning Facial Expression Recognition for Real Time Online Lectures (딥러닝 표정 인식을 활용한 실시간 온라인 강의 이해도 분석)

  • Lee, Jaayeon;Jeong, Sohyun;Shin, You Won;Lee, Eunhye;Ha, Yubin;Choi, Jang-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1464-1475
    • /
    • 2020
  • Due to the spread of COVID-19, the online lecture has become more prevalent. However, it was found that a lot of students and professors are experiencing lack of communication. This study is therefore designed to improve interactive communication between professors and students in real-time online lectures. To do so, we explore deep learning approaches for automatic recognition of students' facial expressions and classification of their understanding into 3 classes (Understand / Neutral / Not Understand). We use 'BlazeFace' model for face detection and 'ResNet-GRU' model for facial expression recognition (FER). We name this entire process 'Degree of Understanding (DoU)' algorithm. DoU algorithm can analyze a multitude of students collectively and present the result in visualized statistics. To our knowledge, this study has great significance in that this is the first study offers the statistics of understanding in lectures using FER. As a result, the algorithm achieved rapid speed of 0.098sec/frame with high accuracy of 94.3% in CPU environment, demonstrating the potential to be applied to real-time online lectures. DoU Algorithm can be extended to various fields where facial expressions play important roles in communications such as interactions with hearing impaired people.

An Algorithm for Computing of the Network Reliability (SDP기법에 근거한 전체 네트워크 신뢰도 계산을 위한 효율적 알고리즘)

  • 하경재;서상희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.473-476
    • /
    • 2000
  • The network reliability is to be computed in terms of the terminal reliability. The computation of a termini reliability is started with a Boolean sum of products expression corresponding to simple paths of the pair of nodes. This expression is then transformed into another equivalent expression to be a Disjoint Sum of Products form. But this computaion of the terminal reliability obviously does not consider the communication between any other nodes but for the source and the sink. In this paper, we derive the overall network reliability which is the probability of communication that each node in the network communicates with all other remaining nodes. For this, we propose a method to make the SOP disjoint for deriving the network reliability expression from the system success expression using the modified Sheinman's method and modified BDD method.

  • PDF

Dynamic Emotion Classification through Facial Recognition (얼굴 인식을 통한 동적 감정 분류)

  • Han, Wuri;Lee, Yong-Hwan;Park, Jeho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.53-57
    • /
    • 2013
  • Human emotions are expressed in various ways. It can be expressed through language, facial expression and gestures. In particular, the facial expression contains many information about human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. This paper proposes a emotional expression algorithm using Active Appearance Model(AAM) and Fuzz k- Nearest Neighbor which give facial expression in similar with vague human emotion. Applying Mahalanobis distance on the center class, determine inclusion level between center class and each class. Also following inclusion level, appear intensity of emotion. Our emotion recognition system can recognize a complex emotion using Fuzzy k-NN classifier.