• 제목/요약/키워드: algebraic problem solving method

검색결과 39건 처리시간 0.019초

K-최대용량경로(最大容量經路) 계산법(計算法)에 관한 연구(硏究) (A Study on Algorithms for Calculating the k-Maximum Capacity Paths in a Network)

  • 김병수;김충영
    • 대한산업공학회지
    • /
    • 제19권2호
    • /
    • pp.105-117
    • /
    • 1993
  • Methods for calculating k shortest paths in a network system, are based on a analogy which exists between the solution of a network problem and traditional techniques for solving linear equations. This paper modifies an algebraic structure of the K shortest path method and develops k maximum flow methods. On the basis of both theoretical and algebraic structure, three iteration methods are developed and the effective procedure of each method are provided. Finally, computational complexity is discussed for those methods.

  • PDF

Numerical solving of initial-value problems by Rbf basis functions

  • Gotovac, Blaz;Kozulic, Vedrana
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.263-285
    • /
    • 2002
  • This paper presents a numerical procedure for solving initial-value problems using the special functions which belong to a class of Rvachev's basis functions $R_{bf}$ based on algebraic and trigonometric polynomials. Because of infinite derivability of these functions, derivatives of all orders, required by differential equation of the problem and initial conditions, are used directly in the numerical procedure. The accuracy and stability of the proposed numerical procedure are proved on an example of a single degree of freedom system. Critical time step was also determined. An algorithm for solving multiple degree of freedom systems by the collocation method was developed. Numerical results obtained by $R_{bf}$ functions are compared with exact solutions and results obtained by the most commonly used numerical procedures for solving initial-value problems.

'역 분수 문제'에 대한 5학년 학생들의 해결 방법 분석 (An analysis of solution methods by fifth grade students about 'reverse fraction problems')

  • 방정숙;조선미
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권1호
    • /
    • pp.1-20
    • /
    • 2019
  • As the importance of algebraic thinking in elementary school has been emphasized, the links between fraction knowledge and algebraic thinking have been highlighted. In this study, we analyzed the solution methods and characteristics of thinking by fifth graders who have not yet learned fraction division when they solved 'reverse fraction problems' (Pearn & Stephens, 2018). In doing so, the contexts of problems were extended from the prior study to include the following cases: (a) the partial quantity with a natural number is discrete or continuous; (b) the partial quantity is a natural number or a fraction; (c) the equivalent fraction of partial quantity is a proper fraction or an improper fraction; and (d) the diagram is presented or not. The analytic framework was elaborated to look closely at students' solution methods according to the different contexts of problems. The most prevalent method students used was a multiplicative method by which students divided the partial quantity by the numerator of the given fraction and then multiplied it by the denominator. Some students were able to use a multiplicative method regardless of the given problem contexts. The results of this study showed that students were able to understand equivalence, transform using equivalence, and use generalizable methods. This study is expected to highlight the close connection between fraction and algebraic thinking, and to suggest implications for developing algebraic thinking when to deal with fraction operations.

Symbolic Algorithm for a System of Differential-Algebraic Equations

  • Thota, Srinivasarao;Kumar, Shiv Datt
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1141-1160
    • /
    • 2016
  • In this paper, a symbolic algorithm for solving a regular initial value problem (IVP) for a system of linear differential-algebraic equations (DAEs) with constant coeffcients has been presented. Algebra of integro-differential operators is employed to express the given system of DAEs. We compute a canonical form of the given system which produces another simple equivalent system. Algorithm includes computing the matrix Green's operator and the vector Green's function of a given IVP. Implementation of the proposed algorithm in Maple is also presented with sample computations.

A NEW APPROACH FOR STABILIZATION OF NONSTENDAD SINGULARLY PERTYRBED SYSTEMS

  • Xu, Hua;Mukaidani, Hiroaki;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.99-102
    • /
    • 1995
  • In this paper, we consider the stabilization problem of nonstandard singularly perturbed systems by using state feedback. Different fro the existing sequenetial designn procedures, we propose a parallel design method to construct the stabilizing controller. The method involves solving two completely independent algebraic Riccati equations.

  • PDF

방정식의 문제 만들기 활동에서 문제구조를 중심으로 문제해결에 관한 연구 (A Case Study on Students' Problem Solving in process of Problem Posing for Equation at the Middle School Level)

  • 고상숙;전성훈
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권1호
    • /
    • pp.109-128
    • /
    • 2009
  • 2006년에 발표된 7차 수학과 개정시안의 교수학습활동에서는 더욱 확장된 문제해결능력과 창의적 사고로 나아가도록 문제 만들기 활동을 포함하였다. 본 연구는 Polya의 문제 만들기 전략에 따른 문제 만들기 수업을 통해 학생의 문제해결 과정을 이해하고 효과적인 교수 학습을 논의하고자 하였다. 학생의 학습과정을 조사하는 것이므로 정성연구방법을 선택하여 중학교 방정식 내용을 중심으로 5차시에 걸친 문제 만들기 활동을 구성하여 중학교 2명의 협력학습과정을 관찰 면담을 실시하였다. 연구결과로는 첫째, 문제해결에서 주어진 것과 구하려는 것을 알고 관계식을 세워서 알고 있는 수학적 지식을 바탕으로 풀이하는 과정에서 수학성적이 우수한 학생은 문제구조를 잘 파악하고 유사한 문제 또는 새로운 문제를 만들 때 자유롭게 변인을 구성하였는데 이렇게 문제의 외적구조를 정확히 파악한 배경에는 문제의 내적 구조와 관련깊은 대수적 사고가 잘 형성된 결과임을 알 수 있었다. 둘째, 문제를 해결할 때 주어진 것과 구하려는 것의 각각의 변인을 바꾸거나 첨가하여 새로운 문제를 구성할 때 학생들은 자신이 해결한 문제를 다시 보게 되어서 반성적 사고를 이끌어 낼 수 있는 기회가 되었다.

  • PDF

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.

직렬-병렬 시스템의 중복 설계 문제의 전역 최적화 해법에 관한 연구 (A Study on A Global Optimization Method for Solving Redundancy Optimization Problems in Series-Parallel Systems)

  • 김재환;유동훈
    • 해양환경안전학회지
    • /
    • 제6권1호
    • /
    • pp.23-33
    • /
    • 2000
  • This paper is concerned with finding the global optimal solutions for the redundancy optimization problems in series-parallel systems related with system safety. This study transforms the difficult problem, which is classified as a nonlinear integer problem, into a 0/1 IP(Integer Programming) by using binary integer variables. And the global optimal solution to this problem can be easily obtained by applying GAMS (General Algebraic Modeling System) to the transformed 0/1 IP. From computational results, we notice that GA(Genetic Algorithm) to this problem, which is, to our knowledge, known as a best algorithm, is poor in many cases.

  • PDF

동적기하프로그램을 활용한 이차곡선 최적화 문제해결에 관한 연구 (A Study on the Optimization Problem Solving utilizing the Quadratic Curve using the Dynamic Geometry Software)

  • 김정수;전보현;정영우;김부윤;이양
    • East Asian mathematical journal
    • /
    • 제30권2호
    • /
    • pp.149-172
    • /
    • 2014
  • The problems of optimization addressed in the high school curriculum are usually posed in real-life contexts. However, because of the instructional purposes, problems are artificially constructed to suit computation, rather than to reflect real-life problems. Those problems have thus limited use for teaching 'practicalities', which is one of the goals of mathematics education. This study, by utilizing 'GeoGebra', suggests the optimization problem solving related to the quadratic curve, using the contour-line method which contemplates the quadratic curve changes successively. By considering more realistic situations to supplement the limit which deals only with numerical and algebraic approach, this attempt will help students to be aware of the usefulness of mathematics, and to develop interests in mathematics, as well as foster students' integrated thinking abilities across units. And this allows students to experience a variety of math.

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.