• Title/Summary/Keyword: algal detection

Search Result 43, Processing Time 0.031 seconds

Direct Colorimetric Assay of Microcystin Using Protein Phosphatase

  • Oh, Hee-Mock;Lee, Seog-June;Kim, Jee-Hwan;Park, Chan-Sun;Yoon, Byung-Dae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.418-421
    • /
    • 2000
  • A new direct colorimetric assay of microcystin in water and algal samples is proposed consisting of two procedures as follows: 1) the elimination of phosphorus in the sample and concentration of microcystin using a C(sub)18 cartridge, 2) the detection of the released phosphorus by the ascorbic acid method and determination of protein phosphatase (PP) inhibition by microcystin. The optimum amounts of phosphorylase ${\alpha}$ and PP-1 in 50 ${\mu}$L concentrated sample were 50$\mu\textrm{g}$/50${\mu}$L buffer and 1.0unit/50${\mu}$L buffer, respectively, for the best assay. The pH for the maximum activity of PP-1 was 8. The minimum detectable concentration for this method was about 0.02$\mu\textrm{g}$/L, which is sufficient to meet the proposed guideline level of 1$\mu\textrm{g}$ microcystin/L in drinking water. Consequently, it would seem that the proposed direct colorimetric assay using PP is a rapid, easy, and convenient method for the detection of microcystin in water and algal samples.

  • PDF

COMPARISON OF RED TIDE DETECTION BY A NEW RED TIDE INDEX METHOD AND STANDARD BIO-OPTICAL ALGORITHM APPLIED TO SEA WIFS IMAGERY IN OPTICALLY COMPLEX CASE-II WATERS

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.445-449
    • /
    • 2005
  • Various methods to detect the phytoplankton/red tide blooms in the oceanic waters have been developed and tested on satellite ocean color imagery since the last two and half decades, but accurate detection of blooms with these methods remains challenging in optically complex turbid waters, mainly because of the eventual interference of absorbing and scattering properties of dissolved organic and particulate inorganic matters with these methods. The present study introduces a new method called Red tide Index (Rl), providing indices which behave as a good measure of detecting red tide algal blooms in high scattering and absorbing waters of the Korean South Sea and Yellow Sea. The effectiveness of this method in identifying and locating red tides is compared with the standard Ocean Chlorophyll 4 (OC4) bio-optical algorithm applied to SeaWiFS ocean imagery, acquired during two bloom episodes on 27 March 2002 and 28 September 2003. The result revealed that OC4 bio-optical algorithm falsely identifies red tide blooms in areas abundance in colored dissolved organic and particulate inorganic matter constituents associated with coastal areas, estuaries and river mouths, whereas red tide index provides improved capability of detecting, predicting and monitoring of these blooms in both clear and turbid waters.

  • PDF

Development and Evaluation of Real-time Acoustic Detection System of Harmful Red-tide Using Ultrasonic Sound (초음파를 이용한 유해적조의 실시간 음향탐지 시스템 개발 및 평가)

  • Kang, Donhyug;Lim, Seonho;Lee, Hyungbeen;Doh, Jaewon;Lee, Youn-Ho;Choi, Jee Woong
    • Ocean and Polar Research
    • /
    • v.35 no.1
    • /
    • pp.15-26
    • /
    • 2013
  • The toxic, Harmful Algal Blooms (HABs) caused by the Cochlodinium polykrikoides have a serious impact on the coastal waters of Korea. In this study, the acoustic detection system was developed for rapid HABs detection, based on the acoustic backscattering properties of the C. polykrikoides. The developed system was mainly composed of a pulser-receiver board, a signal processor board, a control board, a network board, a power board, ultrasonic sensors (3.5 and 5.0 MHz), an environmental sensor, GPS, and a land-based control unit. To evaluate the performance of the system, a trail was done at a laboratory, and two in situ trials were conducted: (1) when there was no red tide, and (2) when there was red tide. In the laboratory evaluation, the system performed well in accordance with the number of C. polykrikoides in the received level. Second, under the condition when there was no red tide in the field, there was a good correlation between the acoustic data and sampling data. Finally, under the condition when there was red tide in the field, the system successfully worked at various densities in accordance with the number of C. polykrikoides, and the results corresponded with the sampling data and monitoring result of NFRDI (National Fisheries Research & Development Institute). From the laboratory and field evaluations, the developed acoustic detection system for early detecting HABs has demonstrated that it could be a significant system to monitor the occurrence of HABs in coastal regions.

Analysis of anatoxin-a in aqueous and cyanobacterial samples from korean lakes by liquid chromatography with fluorescence detection (액체크로마토그래피-형광검출법에 의한 호소시료의 아나톡신-a 분석)

  • Lee, In-Jung;Lee, Chul-Gu;Heo, Seong-Nam;Lee, Jae-Gwan
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • Anatoxin-a is a cyanobacterial neurotoxin with a high toxicity produced by Anabaena, Aphanizomenon and Oscillatoria. Water bloom, formed by Anabaena has been occurring frequently in Lake Yeongchun. It is need to develop a sensitive method for determination of anatoxin-a to control potential hazard in raw water resources. In this study, we developed a highly sensitive analytical method of anatoxin-a using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection. Anatoxin-a was converted into a highly fluorescent derivative using 4-fuoro-7-nitro-2,1,3-benzoxadiazole (NBF-F). The method was evaluated in terms of linearity of calibration curve, recovery and repeatability, and the adequate values were obtained. The method detection limit was $0.034\;{\mu}g/g$ and $0.022\;{\mu}g/L$ for algal and water samples, respectively. The concentrations of anatoxin-a were measured in algal and water samples from Lake Andong, Yeongchun and Daechung and ranged from $0.135\;{\mu}g/g$ to $10.979\;{\mu}g/g$ in algal samples and not detected in water samples.

Fast and Accurate Determination of Algal Toxins in Water using Online Preconcentration and UPLC-Orbitrap Mass Spectrometry (온라인 시료주입과 UPLC-Orbitrap 질량분석법을 이용한 수질 조류독소의 고속분석방법 개발 및 환경시료적용)

  • Jang, Je-Heon;Kim, Yun-Seok;Choi, Jae-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.843-850
    • /
    • 2012
  • Due to the fast response to algae bloom issue in drinking water treatment plant, very fast determination methodology for algal toxin is required. In this study, column switching technique based online preconcentration method was combined with high resolution full scan mass spectrometer to save sample preparation time and to obtain fast and accurate result. After parameter optimization of online preconcentration, 1mL filtered sample was directly injected to trap column with switching valve system. Next, target toxins are eluted by 98% acetonitrile and analysed with 150 - 1,100 amu scan range at 50,000 resolving power. Method detection limit (MDL) for microcystin-LR, the most toxic isomer, was 0.1 ng/mL and others such as microcystin-YR, microcystin-RR and nodularin were 0.08, 0.03 and 0.04 ng/mL, respectively. This is the best improved sensitivities with 1mL volume in the literature. Furthermore, due to the use of ultra pressure HPLC (UPLC), the whole method run was completed in 4 min. Real sample applications for 173 sample including 55 surface water and 118 treatment plant samples for raw and treated water could be done within 16 hours. In our calculation, this methodology is roughly 80% faster than the previous manual solid-phase extraction with LC-MS/MS method.

Satellite-detected red tide algal blooms in Korean and neighboring waters during 1999-2004

  • Ahn Yu-Hwan;Shanmugam Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.95-100
    • /
    • 2006
  • Measurements of ocean color from space since 1970s provided vital information with reference to physical and biogeochemical properties of the oceanic waters. The utility of these data has been explored in order to map and monitor highly toxic/or harmful algal blooms (HABs) that affected most of coastal waters throughout the world due to accelerated eutrophication from human activities and certain oceanic processes. However, the global atmospheric correction and bio-optical algorithms developed for oceanic waters were found to yield false information about the HABs in coastal waters. The present study aimed to evaluate the potential use of red tide index (RI) method, which has been developed by Ahn and Shanmugam (2005), for mapping of HABs in Korean and neighboring waters. Here we employed the SSMM to remove the atmospheric effect in the SeaWiFS image data and the achieved indices by RI method were found more appropriate in correctly identifying potential areas of the encountered HABs in Korean South Sea (KSS) and Chinese coastal waters during 1999-2004. But the existence of high absorbing and scattering materials greatly interfered with the standard OC4 algorithm which falsely identified red tides in these waters. In comparison with other methods, the RI approach for the early detection of HABs can provide state managers with accurate identification of the extent and location of these blooms as a management tool.

  • PDF

Detection of Heterotrophic Dinoflagellate Pfiesteria piscicida (Dinophyceae) in Surface Water Samples Using Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Seo, Mi-Kyung;Park, Young-Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.209-211
    • /
    • 2008
  • Heterotrophic dinoflagellate Pfiesteria piscicida (Dinophyceae) has been claimed to produce potent ichthyotoxins that cause disorientation and eventually death of fish and other marine animals. A real-time PCR probe targeting for SSU rRNA gene was used for detection of P. piscicida in Chinhae Bay, Korea. PCR inhibitors were successfully removed by dilution of template DNA. Positive detections were shown from surface water samples indicating the presence of P. piscicida in Chinhae Bay.

Rapid detection and Quantification of Fish Killing Dinoflagellate Cochlodinium polykrikoides (Dinophyceae) in Environmental Samples Using Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Seo, Mi-Kyung;Kim, Chang-Hoon;Park, Young-Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.205-208
    • /
    • 2008
  • The mixotrophic dinoflagellate Cochlodinium polykrikoides was reported to be linked to major fish kills in Korea and Japan since the 1990s. Rapid and sensitive detection of microalgae has been problematic because morphological identification of dinoflagellates requires light microscopic and scanning electron microscopic observations that are time consuming and laborious compared to real-time PCR. To address this issue, a real-time PCR probe targeting the ITS2 rRNA gene was used for rapid detection and quantification of C. polykrikoides. PCR inhibitors in water column samples were removed by dilution of template DNA for elimination of false-negative reactions. A strong association between cell quantification using real-time PCR and microscopic counts suggests that the real-time PCR assay is an alternative method for cell estimation of C. polykrikoides in environment samples.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya;Reza, Md Nasim;Jeong, Jin-Tae;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.138-144
    • /
    • 2016
  • Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.