• 제목/요약/키워드: alcohol metabolism

검색결과 281건 처리시간 0.025초

순무(Brassica rapa ssp.) 뿌리로부터 flavonoid의 분리 및 동정 (Isolation and Identification of Flavonoids from the Roots of Brassica rapa ssp.)

  • 정락훈;;조진경;이대영;;이민호;이경태;최명숙;정태숙;안은미;정해곤;노영덕;백남인
    • Journal of Applied Biological Chemistry
    • /
    • 제56권1호
    • /
    • pp.23-27
    • /
    • 2013
  • 순무뿌리(Brassica rapassp)를 실온에서 95% ethanol 수용액으로 추출하고 이 추출물을 ethyl acetate (EtOAc)분획, n-butyl alcohol 분획 및 $H_2O$ 분획으로 나누었다. EtOAc분획에 대하여 silica gel, ODS 및 Sephadex LH-20 column chromatography를 반복실시 하여 5종의 flavonoid를 분리하였다. NMR, IR 및 MS data를 해석하여 각각 licochalcone A (1), 4,4'-dihydroxy-3'-methoxychalcone (2), liquiritigenin (3), liquiritin (4), isoliquiritin (5)으로 구조동정하였다. 이들 화합물들은 순무뿌리에서는 처음으로 분리되었다.

ALDH2 유전자형에 따라 나이, 성별로 나누어 비교한 혈중 아세트알데히드 농도에 관한 연구 (Comparison Study on the Blood Acetaldehyde Concentration According to ALDH2 Genotype, Age, Gender)

  • 주병욱;정지운;최세라;이정석;허성영;김현경;김성곤
    • 생물정신의학
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2024
  • Objectives Alcohol is metabolized to acetaldehyde by alcohol dehydrogenase enzyme in the liver and then acetaldehyde is metabolized to acetone by aldehyde dehydrogenase (ALDH) in the liver. There are two main ALDH enzymes which metabolize the acetaldehyde produced during ethanol oxidation. In particular, in the presence of the ALDH2 1*2 allele, the activity of the ALDH 2 enzyme is lowered. As a result, acetaldehyde metabolism is slowed down and acetaldehyde accumulates in the body compared to the ALDH2 1*1 allele. There are many studies that have investigated the blood acetaldehyde concentration according to the ALDH2 genotype, but there are few studies to compare this with age. So we investigated the blood acetaldehyde concentration according to ALDH2 genotype, age and gender. Methods According to the ALDH2 genotype, we divided the group by gender and age. We divided the age group in to three groups which ranged from 20 to 34 years old, from 35 to 49 years old, and lastly from 50 to 64 years old. And then we collected blood samples after 15 min, 30 min, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr and 15 hr of after drinking to measure the blood acetaldehyde concentration. Results In ALDH2 1*2 allele group, there are significant differences of the blood acetaldehyde concentration between the age groups. In ALDH2 1*2 allele and male group, there are significant differences of the blood acetaldehyde concentration between the age groups. Conclusions There are significant differences of the blood acetaldehyde concentration between the age groups according to ALDH2 genotype. Also, there are significant differences of the blood acetaldehyde concentration between the age groups with male gender and ALDH2 1*2 allele. Studies about other factors that may influence the blood acetaldehyde concentration are needed.

의약품에서의 성별차이 및 유발요인 (Review of Gender Differences in Medicine and Primary Factors Resulting in Gender Differences)

  • 김현주;최종민;김유진;채송화;박정현;오지현;김경희;허정선;곽혜선;이화정
    • 한국임상약학회지
    • /
    • 제20권2호
    • /
    • pp.128-137
    • /
    • 2010
  • This review summarizes gender differences in pharmacokinetics, pharmacodynamics, and adverse drug reactions. Gender differences in pharmacokinetics are categorized by four major factors: absorption/bioavailability, distribution, metabolism, and elimination. There are sex-based differences in gastric emptying time, gastric alcohol dehydrogenase activity, apparent volume of distribution, ${\alpha}1$-acid glycoprotein level, phase I (CYP) and phase II metabolizing enzymes, glomerular filtration rate, and drug transporters. This review also reports gender differences in pharmacokinetics and pharmacodynamics of cardiovascular agents, central nervous system acting agents and antiviral agents. In addition, it has been reported that females experience more adverse reactions such as coughing, tachycardia, nausea, vomiting, rash, hypersensitivity, hepatotoxicity, and metabolic disorder after taking cardiovascular, central nervous system acting and antiviral agents. Therefore, in order to provide optimal drug dosage regimens both in male and female, gender differences in pharmacokinetics, pharmacodynamics, and adverse drug reactions must be considered.

제2형 당뇨병 환자의 비타민 B 섭취와 임상지표의 상관관계에 대한 연구 (Study on the Correlation between Dietary Vitamin B Intakes and Clinical Indices of Type 2 Diabetes Patients)

  • 심유진;권지영;정혜연
    • 한국식생활문화학회지
    • /
    • 제35권5호
    • /
    • pp.493-502
    • /
    • 2020
  • The objective of this study was to investigate the effects of dietary vitamin B intake on biomarkers related to lipid metabolism, inflammation and blood glucose control, that are important in the development of type 2 diabetes and its complications. Seventy-six adults (42 males, 34 females) were recruited from a group of diabetes patients who had visited the medical center for treatment. Data on anthropometric characteristics and dietary intake of thiamine, riboflavin, niacin, vitamin B6 and folate were collected using 24-hour diet recall and the CAN Pro 4.0 program. Also, data on clinical indices such as serum lipids, blood pressure, high-sensitivity C-reactive protein (hs-CRP), hemoglobin A1c (HbA1c) and homeostasis model assessment 2-insulin resistance (HOMA2-IR) were collected and analyzed for correlation with dietary vitamin B intake. Results from the dietary intake survey showed that riboflavin and folate intake (in males) and folate intake (in females) were below the Dietary Reference Intake for Koreans. Statistical analysis revealed a negative correlation between hs-CRP and dietary intake of B vitamins. Riboflavin intake was inversely associated with systolic blood pressure after adjustments for age, BMI, smoking, alcohol consumption, exercise, ingestion of diabetes mellitus medication and energy intake (p<0.05). Our results suggest that dietary vitamin B may influence inflammation and consequently may help in better management of type 2 diabetes.

Functional PstI/RsaI Polymorphisms in the CYP2E1 Gene among South Indian Populations

  • Lakkakula, Saikrishna;Maram, Rajasekhar;Munirajan, Arasambattu Kannan;Pathapati, Ram Mohan;Visweswara, Subrahmanyam Bhattaram;Lakkakula, Bhaskar V.K.S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.179-182
    • /
    • 2013
  • Human cytochrome P4502E1 (CYP2E1) is a well-conserved xenobiotic-metabolizing enzyme expressed in liver, kidney, nasal mucosa, brain, lung, and other tissues. CYP2E1 is inducible by ethanol, acetone, and other low-molecular weight substrates and may mediate development of chemically-mediated cancers. CYP2E1 polymorphisms alter the transcriptional activity of the gene. This study was conducted in order to investigate the allele frequency variation in different populations of Andhra Pradesh. Two hundred and twelve subjects belonging to six populations were studied. Genotype and allele frequency were assessed through TaqMan allelic discrimination (rs6413419) and polymerase chain reaction-sequencing (-1295G>C and -1055C>T) after DNA isolation from peripheral leukocytes. The data were compared with other available world populations. The SNP rs6413419 is monomorphic in the present study, -1295G>C and -1055C>T are less polymorphic and followed Hardy-Weinberg equilibrium in all the populations studied. The -1295G>C and -1055C>T frequencies were similar and acted as surrogates in all the populations. Analysis of HapMap populations data revealed no significant LD between these markers in all the populations. Low frequency of $CYP2E1^*c2$ could be useful in the understanding of south Indian population gene composition, alcohol metabolism, and alcoholic liver disease development. However, screening of additional populations and further association studies are necessary. The heterogeneity of Indian population as evidenced by the different distribution of $CYP2E1^*c2$ may help in understanding the population genetic and evolutionary aspects of this gene.

Conjugation of Cyclohexane Metabolite in Liver Damaged Rats

  • ;윤종국
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.361-370
    • /
    • 2006
  • To evaluate an effect of pathological liver damage on the conjugation of cyclohexane metabolites, rats were pretreated with 50% $CCl_4$ dissolved in olive oil (0.1 ml/100 g body weight) 10 or 17 times intraperitoneally at intervals of every other day. On the basis of liver function, the animals pretreated with $CCl_4$ 10 times were identified as acutely liver damaged ones and the animals pretreated with $CCl_4$ 17 times were identified as severly liver damaged ones. To these liver damaged animals, cyclohexane (a single dose of 1.56 g/kg body weight, i.p.) was administered at 48 hr after the last injection of $CCl_4$. The rats were sacrificed at 4 or 8 hr after injection of cyclohexane. The cyclohexane metabolites, cyclohexanol (CH-ol), cyclohexane-1,2-diol (CH-1,2-diol), cyclohexane-1,4-diol (CH-1,4-diol), and their glucuronyl conjugates and cyclohexanone were detected in the urine of cyclohexane treated rats. The urinary concentration of cyclohexane metabolites was generally more increased in liver damaged animals than normal ones, and the increasing rate was higher in $CCl_4$ 17 times injected rats than 10 times injected ones. And liver damaged.ats, especially $CCl_4$ 17 times treated ones, had an enhanced ability of glucuronyl conjugation to CH-ol analogues compared with normal group. Futhermore, CH-1,2 and 1,4-diol were all conjugated with glucuronic acid in $CCl_4$ 17 times injected animals. On the other hand, the increasing rate of activities of hepatic cytochrome P450 dependent aniline hydroxylase, alcohol dehydrogenase and urine diphosphate glucuronyl transferase was higher in 17 times $CCl_4$-treated rats compared with normal and $CCl_4$ 10 times injected animals. Taken all together, it is assumed that an increased urinary excretion amount of cyclohexane metabolites in liver damaged rats might be caused by an increase in the activities of cyclohexane metabolizing enzymes. And enhanced conjugating ability of CH-ol in liver damaged animals and novel finding of conjugating form of CH-1,2 and 1,4-diol might be caused by increase in the activity of hepatic diphosphouridine glucuronyltransferase.

  • PDF

Protective Effect of Dandelion Extracts on Ethanol-Induced Acute Hepatotoxicity in C57BL/6 Mice

  • Liu, Xiao-Yu;Ma, Jie;Park, Chung-Mu;Chang, Hee-Kyung;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.269-275
    • /
    • 2008
  • Dandelion (Taraxacum officinale) has been widely used as an anti-inflammatory agent in oriental medicine. In the current study, we investigated the protective effect, and the possible mechanism, of dandelion extracts against ethanol-induced acute hepatotoxicity in C57BL/6 mice. Dandelion water and ethanol extract was administered at 2 g/kg body weight (BW) once daily for 7 consecutive days, whereas control and ethanol groups received water by gavage. Ethanol (50% ethanol; 6 g/kg BW) was administered 12 hr before sacrificing the mice in order to generate liver injury. Significantly increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as liver triglyceride (TG) and cholesterol levels were attenuated by dandelion supplementation. In addition, dandelion extracts not only enhanced alcohol dehydrogenase (ADH) and anti-oxidative enzyme activities, but reduced lipid peroxidation. Cytochrome P450 2E1 (CYP 2E1), one of the critical enzymes xenobiotic metabolism, expression was lower with ethanol treatment but restored by dandelion supplementation. These results were confirmed by improved histopathological changes in fatty liver and hepatic lesions induced by ethanol. In conclusion, dandelion could protect liver against ethanol administration by attenuating of oxidative stress and inflammatory responses.

Relationships among MTHFR a1298c Gene Polymorphisms and Methylation Status of Dact1 Gene in Transitional Cell Carcinomas

  • Cheng, Huan;Lu, Meng;Mao, Li-Jun;Wang, Jun-Qi;Li, Wang;Wen, Ru-Min;Chen, Jia-Cun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5069-5074
    • /
    • 2012
  • Objectives: The purpose of this study was to determine the relationship between methylation status of the Dact1 gene and MTHFR a1298c polymorphic forms in transitional cell carcinoma tissues in a Chinese population. Methods: Polymorphisms of folate metabolism enzyme gene MTHFR were assessed by restrictive fragment length polymorphism (RFLP) methods and PCR-based DNA methylation analysis was used to determine the CpG island methylation status of the Dact1 gene. Associations between the methylation status of the Dact1 gene and clinical characteristics, as well as MTHFR a1298c polymorphisms, were analyzed. Results: aberrant methylation of the Dact1 gene was found in 68.3% of cancer tissues and 12.4% of normal tissues,. The methylation rate of the Dact1 gene in cancer tissues was significantly higher in patients with lymph node metastasis than in those without lymph node metastasis (46.3% vs. 17.2%, P = 0.018). No association was found between aberrant DNA methylation and selected factors including sex, age, tobacco smoking, alcohol consumption and green tea consumption. After adjusting for potential confounding variables, variant allele of MTHFR a1298c was found to be associated with methylation of the Dact1 gene. Compared with wild type CC, the odds ratio was 4.33 (95% CI: 1.06-10.59) for AC and 4.95 (95% CI: 1.18-12.74) for AA. The N stage in TNM staging and the occurrence of lymph node metastasis were associated with an MTHFR 1298 AA+AC genotype (P<0.05). Conclusion: MTHFR 1298 AC and AA genotypes might help maintain a normal methylation status of the Dact1 gene, aberrant CpG island methylation of which is closely related to the genesis and progression of transitional cell carcinoma.

흰쥐의 배양된 간세포에서 ethanol에 의해 유도된 p42/44 MAPkinase가 IGF system에 미치는 효과 (Effects of ethanol-induced p42/44 MAPkinase activity on IGF system in primary cultured rat hepatocytes)

  • 이선미;김종훈;강창원
    • 대한수의학회지
    • /
    • 제46권4호
    • /
    • pp.315-322
    • /
    • 2006
  • Ethanol abuse is associated with liver injury, neurotoxicity, modulation of immune responses, and increased risk for cancer, whereas moderate ethanol consumption exerts protective effects against liver injury. However, the underlying signal transduction mechanisms of insulin-like growth factors (IGFs) which play an important regulatory role in various metabolism mechanisms are not well understood. We investigated the effects of ethanol-induced p42/44 activity on IGF-I secretion, IGF-I receptor and IGFBP-1 secretion using radioimmunoassay and western blotting in primary cultured rat hepatocytes. The p42/44 activity, IGF-I secretion and IGF-I receptor activity significantly accelerated compared to control at 10 and 30 min after 200 mM ethanol treatment, but then it became suppressed at 180 min. In contrast, IGFBP-1 secretion was inhibited compared to control at 30 min after 200 mM ethanol treatment, but increased at 180 min. The IGF-I secretion, IGF-I receptor and p42/44 activity at 30 min after 200 mM ethanol treatment accelerated with increasing ethanol concentration but IGFBP-1 secretion inhibited (p<0.05). The increased IGF-I secretion, inhibited IGFBP-1 secretion and IGF-IR activity by ethanol-induced temporal p42/44 activity at 30 min after ethanol treatment was blocked by treatment with PD98059. Alcohol dehydrogenase (ADH) inhibitor, 4-methylpyramazole blocked the changes of IGF-I secretion, IGFBP-1 secretion, and IGF-IR activity by ethanol-induced p42/44 activity at 30 and 180 min. Taken together, these results suggest that ethanol is involved in the modulation of IGF-I and IGFBP-1 secretion and IGF-IR activity by p42/44 activity in primary cultured rat hepatocytes. In addition, changing of p42/44 activity by ethanol was caused with ADH.

Miscanthus로부터 furfural 생산과 잔여물의 활용에 관한 연구 (Furfural production from miscanthus and utilization of miscanthus residues)

  • 김성봉;유하영;이상준;이자현;최한석;김승욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.114.2-114.2
    • /
    • 2011
  • Furfural is a versatile derivative. It can be utilized for a building-block of furfuryl alcohol production and a component of fuels or liquid alkanes. But in bio-process, furfural is a critical compound because it inhibits cell growth and metabolism. Furfural could be converted from xylose and usually produced from biomass in which hemicellulose is abundant. In this study, furfural production from miscanthus was performed and utilization of miscanthus residue was consequently conducted. At first, hydrolysis for investigation of miscanthus composition and furfural production was performed using sulfuric acid. Previously, we optimized dilute acid pretreatment condition for miscanthus pretreatment and the condition was found to be about 15 min of reaction time, 1.5% of acid concentration and about $140^{\circ}C$ of temperature and 60% (about 7 g/L) of xylose was solubilized from miscanthus. Using the xylose, furfural production was conducted as second step. Approximately $160{\sim}200^{\circ}C$ of temperature was accompanied with the hydrolysis for pyrolysis of biomass. When the investigated condition; $180^{\circ}C$ of temperature, 20 min of reaction time and 2% of acid concentration was operated for furfural production, furfural productivity was reached to be 77% of theoretical maximum. After reaction, residue of miscanthus was utilized as feedstock of ethanol fermentation. Residue was well washed using water and saccharified using hydrolysis enzymes. Hydrolysate (glucose) from saccharification was utilized for the carbon source of Saccharomyces cervisiae K35.

  • PDF