• Title/Summary/Keyword: alanine transaminase

Search Result 205, Processing Time 0.047 seconds

Effects of reducing inclusion rate of roughages by changing roughage sources and concentrate types on intake, growth, rumen fermentation characteristics, and blood parameters of Hanwoo growing cattle (Bos Taurus coreanae)

  • Jeon, Seoyoung;Jeong, Sinyong;Lee, Mingyung;Seo, Jakyeom;Kam, Dong Keun;Kim, Jeong Hoon;Park, Jaehwa;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1705-1714
    • /
    • 2019
  • Objective: Reducing roughage feeding without negatively affecting rumen health is of interest in ruminant nutrition. We investigated the effects of roughage sources and concentrate types on growth performance, ruminal fermentation, and blood metabolite levels in growing cattle. Methods: In this 24-week trial, 24 Hanwoo cattle ($224{\pm}24.7kg$) were fed similar nitrous and energy levels of total mixed ration formulated using two kinds of roughage (timothy hay and ryegrass straw) and two types of concentrate mixes (high starch [HS] and high fiber [HF]). The treatments were arranged in a $2{\times}2$ factorial, consisting of 32% timothy-68% HS, 24% timothy-76% HF, 24% ryegrass-76% HS, and 17% ryegrass-83% HF. Daily feed intakes were measured. Every four weeks, blood were sampled, and body weight was measured before morning feeding. Every eight weeks, rumen fluid was collected using a stomach tube over five consecutive days. Results: The mean dry matter intake (7.33 kg) and average daily gain (1,033 g) did not differ among treatments. However, significant interactions between roughage source and concentrate type were observed for the rumen and blood parameters (p<0.05). Total volatile fatty acid concentration was highest (p<0.05) in timothy-HF-fed calves. With ryegrass as the roughage source, decreasing the roughage inclusion rate increased the molar proportion of propionate and decreased the acetate-to-propionate ratio; the opposite was observed with timothy as the roughage source. Similarly, the effects of concentrate types on plasma total protein, alanine transaminase, Ca, inorganic P, total cholesterol, triglycerides, and creatinine concentrations differed with roughage source (p<0.05). Conclusion: Decreasing the dietary roughage inclusion rate by replacing forage neutral detergent fiber with that from non-roughage fiber source might be a feasible feeding practice in growing cattle. A combination of low-quality roughage with a high fiber concentrate might be economically beneficial.

Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/Reperfusion Injury during Liver Transplantation

  • Kwon, Jae Hyun;Lee, Jooyoung;Kim, Jiye;Kirchner, Varvara A.;Jo, Yong Hwa;Miura, Takeshi;Kim, Nayoung;Song, Gi-Won;Hwang, Shin;Lee, Sung-Gyu;Yoon, Young-In;Tak, Eunyoung
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.672-685
    • /
    • 2019
  • Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygen-glucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.

The co-injection of antioxidants with foot-and-mouth disease vaccination altered growth performance and blood parameters of finishing Holstein steers

  • Seo, Jakyeom;Song, Minho;Jo, Namchul;Kim, Woonsu;Jeong, Sinyong;Kim, Jongnam;Lee, Seyoung;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.792-799
    • /
    • 2019
  • Objective: This study was conducted to evaluate whether the co-injection of antioxidants together with foot-and-mouth disease (FMD) vaccination has the potential to attenuate the negative effects caused by vaccination in Holstein finishing steers. Methods: A total of 36 finishing Holstein steers (body weight [BW]: $608{\pm}45.6kg$, 17 months old) were randomly allocated to one of three treatments: i) control (CON, only FMD vaccination without any co-injection), ii) co-injection of commercial non-steroidal anti-inflammatory drugs (NSAID) with FMD vaccination at a ratio of 10:1 (NSAID vol/FMD vaccine vol) as a positive control (PCON), iii) co-injection of commercial mixture of vitamin E and selenium with FMD vaccination (VITESEL) (1 mL of FMD vaccine+1 mL of antioxidants per 90 kg of BW). Changes in growth performance and blood parameters because of treatments were determined. Results: No significant difference in BW, average daily gain, and dry matter intake of the steers was observed among the treatments. The FMD vaccination significantly increased white blood cells (WBC), neutrophils, platelets, and mean platelet volume (p<0.01) in blood analysis. The count of lymphocyte tended to increase after vaccination (p = 0.08). In blood analysis, steers in VITESEL tended to have higher numbers of WBC, neutrophils, and platelets compared to that of other treatments (p = 0.09, 0.06, and 0.09, respectively). Eosinophils in VITESEL were higher than those in PCON (p<0.01). Among blood metabolites, blood urea nitrogen and aspartate transaminase were significantly increased, but cholesterol, alanine transferase, inorganic phosphorus, Mg, and albumin were decreased after FMD vaccination (p<0.01). Conclusion: The use of antioxidants in FMD vaccination did not attenuate growth disturbance because of FMD vaccination. The metabolic changes induced by vaccination were not controlled by the administration of antioxidants. The protective function of antioxidants was effective mainly on the cell counts of leukocytes.

Growth performance and blood profiles of Hanwoo steers at fattening stage fed Korean rice wine residue

  • Kim, Seon Ho;Ramos, Sonny C.;Jeong, Chang Dae;Mamuad, Lovelia L.;Park, Keun Kyu;Cho, Yong Il;Son, Arang;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.812-823
    • /
    • 2020
  • The aim of this study was to investigate the effects of Korean rice wine residue (RWR) on the growth performance and blood profiles of Hanwoo steers in the fattening stage. In situ and in vivo experiments were conducted to analyze rumen fermentation characteristics and total tract digestibility, respectively. Three cannulated Hanwoo steers (mean body weight: 448 ± 30 kg) were used in both analyses. The growth performance of 27 experimental animals in the fattening stage (initial body weight: 353.58 ± 9.76 kg) was evaluated after 13 months of feeding. The animals were divided into three treatment groups (n = 9/group). The treatments comprised total mixed ration (TMR) only (CON), TMR + 10% RWR (10% RWR), and TMR + 15% RWR (15% RWR). The diets of equal proportions were fed daily at 08:00 and 18:00 h based on 2% of the body weight. The animals had free access to water and trace mineral salts throughout the experiment. Supplementation of 15% RWR significantly decreased (p < 0.05) the rumen fluid pH compared with the control treatment, but there was no significant difference in the total volatile fatty acid concentration. It also significantly increased (p < 0.05) dry matter digestibility compared with the other treatments. The total weight gain and average daily gain of the animals in the RWR-supplemented groups were significantly higher (p < 0.05) than those in the control group. Furthermore, the feed intake and feed efficiency of the RWR-supplemented groups were higher than those of the control group. Supplementation of RWR did not affect the alcohol, albumin, glucose, total cholesterol, triglyceride, and low-density lipoprotein concentrations, and aspartate aminotransferase and alanine transaminase activities in the blood; these parameters were within the normal range. The high-density lipoprotein and creatinine concentrations were significantly higher in the 15% RWR group, whereas the blood urea nitrogen concentration was significantly higher in the 10% RWR group than in the other groups. These results suggest that TMR with 15% RWR can serve as an alternate feed resource for ruminants.

Iron sulfate and molasses treated anthocyanin-rich black cane silage improves growth performance, rumen fermentation, antioxidant status, and meat tenderness in goats

  • Rayudika Aprilia Patindra, Purba;Ngo Thi Minh, Suong;Siwaporn, Paengkoum;Pramote, Paengkoum;Juan Boo, Liang
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.218-228
    • /
    • 2023
  • Objective: This study investigated the effects of feeding anthocyanin-rich black cane treated with ferrous sulfate and molasses on animal performance, rumen fermentation, microbial composition, blood biochemical indices, and carcass characteristics in meat goats. Methods: Thirty-two Thai-native×Anglo-Nubian crossbred male goats (14.47±2.3 kg) were divided equally into two groups (n = 16) to investigate the effect of feeding diet containing 50% untreated anthocyanin-rich black cane silage (BS) vs diet containing anthocyaninrich black cane silage treated with 0.03% ferrous sulfate and 4% molasses (TBS) on average daily gain (ADG) and dry matter intake (DMI). At the end of 90 d feeding trial, the goats were slaughtered to determine blood biochemical indices, rumen fermentation, microbial composition, and carcass characteristics differences between the two dietary groups. Results: Goats fed the TBS diet had greater ADG and ADG to DMI ratio (p<0.05). TBS diet did not affect rumen fluid pH; however, goats in the TBS group had lower rumen ammonia N levels (p<0.05) and higher total volatile fatty acid concentrations (p<0.05). Goats in the TBS group had a higher (p<0.05) concentration of Ruminococcus albus but a lower (p<0.05) concentration of methanogenic bacteria. The TBS diet also resulted in lower (p<0.05) thiobarbituric acid-reactive substances concentration but higher (p<0.05) total antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase concentrations in blood plasma, while having no effect on plasma protein, glucose, lipid, immunoglobin G, alanine transaminase, and aspartate aminotransferase. Meat from goats fed the TBS diet contained more intramuscular fat (p<0.05) and was more tender (p<0.05). Conclusion: In comparison to goats fed a diet containing 50% untreated anthocyanin-rich black cane silage, feeding a diet containing 50% anthocyanin-rich black cane silage treated with 0.03% ferrous sulfate and 4% molasses improved rumen fermentation and reduced oxidative stress, resulting in higher growth and more tender meat.

Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury

  • Yu, Yonghui;Zhang, Jingjie;Wang, Jing;Wang, Jing;Chai, Jiake
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.589-603
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Previous studies have reported that protein supplementation contributes to the attenuation of inflammation. Serious trauma such as burn injury usually results in the excessive release of inflammatory factors and organs dysfunction. However, a few reports continued to focus on the function of protein ingestion in regulating burn-induced inflammation and organ dysfunction. MATERIALS/METHODS: This study established the rat model of 30% total body surface area burn injury, and evaluated the function of blended protein (mixture of whey and soybean proteins). Blood routine examination, inflammatory factors, blood biochemistry, and immunohistochemical assays were employed to analyze the samples from different treatment groups. RESULTS: Our results indicated a decrease in the numbers of white blood cells, monocytes, and neutrophils in the burn injury group administered with the blended protein nutritional support (Burn+BP), as compared to the burn injury group administered normal saline supplementation (Burn+S). Expressions of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6 [IL-6]) and chemokines (macrophage chemoattractant protein-1, regulated upon activation normal T cell expressed and secreted factor, and C-C motif chemokine 11) were dramatically decreased, whereas anti-inflammatory factors (IL-4, IL-10, and IL-13) were significantly increased in the Burn+BP group. Kidney function related markers blood urea nitrogen and serum creatinine, and the liver function related markers alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were remarkably reduced, whereas albumin levels were elevated in the Burn+BP group as compared to levels obtained in the Burn+S group. Furthermore, inflammatory cells infiltration of the kidney and liver was also attenuated after burn injury administered with blended protein supplementation. CONCLUSIONS: In summary, nutritional support with blended proteins dramatically attenuates the burn-induced inflammatory reaction and protects organ functions. We believe this is a new insight into a potential therapeutic strategy for nutritional support of burn patients.

Red Yeast Rice (Monascus purpureus) Extract Prevents Binge Alcohol Consumption-induced Leaky Gut and Liver Injury in Mice (알코올성 간 및 장 손상 마우스모델에서 홍국쌀 추출물의 항산화효과)

  • Gi-Seok Kwon;Dong-ha Kim;Hyun-Ju Seo;Young-Eun Cho;Jung-Bok Lee
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.183-190
    • /
    • 2023
  • Red yeast rice, also known as Hong Qu and red Koji, has been used for a long time in Asian functional food and traditional medicine. It consists of multiple bioactive substances, which can potentially be used as nutraceuticals. Alcoholic liver disease (ALD) can range from simple steatosis or inflammation to fibrosis and cirrhosis, possibly through leaky gut and systemic endotoxemia. This study examined the liver and gut effects of red yeast rice (RYR) (Monascus purpureus) ethanol extract against binge ethanol-induced liver injury in mice. RYR extract was orally administered to C57BL/6N mice at a concentration of 200 mg/kg body weight per day for 10 days. Then, mice were administered binge alcohol (5 g/kg/dose) three times at 12 hr intervals. Binge alcohol exposure significantly elevated the endotoxin, aspartate aminotransferase (AST), and alanine transaminase (ALT) activity of plasma, as well as hepatic triglyceride levels; however, RYR treatments reduced these levels. In addition, RYR pretreatment significantly reduced the alcohol-induced oxidative maker protein and apoptosis maker in binge alcohol-induced gut and liver injuries. These results suggest that RYR may prevent alcohol-induced acute leaky gut and liver damage.

Interactions Between Genetic Risk Score and Healthy Plant Diet Index on Cardiometabolic Risk Factors Among Obese and Overweight Women

  • Fatemeh Gholami;Mahsa Samadi;Niloufar Rasaei;Mir Saeid Yekaninejad;Seyed Ali Keshavarz;Gholamali Javdan;Farideh Shiraseb;Niki Bahrampour;Khadijeh Mirzaei
    • Clinical Nutrition Research
    • /
    • v.12 no.3
    • /
    • pp.199-217
    • /
    • 2023
  • People with higher genetic predisposition to obesity are more susceptible to cardiovascular diseases (CVDs) and healthy plant-based foods may be associated with reduced risks of obesity and other metabolic markers. We investigated whether healthy plant-foods-rich dietary patterns might have inverse associations with cardiometabolic risk factors in participants at genetically elevated risk of obesity. For this cross-sectional study, 377 obese and overweight women were chosen from health centers in Tehran, Iran. We calculated a healthy plant-based diet index (h-PDI) in which healthy plant foods received positive scores, and unhealthy plant and animal foods received reversed scores. A genetic risk score (GRS) was developed based on 3 polymorphisms. The interaction between GRS and h-PDI on cardiometabolic traits was analyzed using a generalized linear model (GLM). We found significant interactions between GRS and h-PDI on body mass index (BMI) (p = 0.02), body fat mass (p = 0.04), and waist circumference (p = 0.056). There were significant gene-diet interactions for healthful plant-derived diets and BMI-GRS on high-sensitivity C-reactive protein (p = 0.03), aspartate aminotransferase (p = 0.04), alanine transaminase (p = 0.05), insulin (p = 0.04), and plasminogen activator inhibitor 1 (p = 0.002). Adherence to h-PDI was more strongly related to decreased levels of the aforementioned markers among participants in the second or top tertile of GRS than those with low GRS. These results highlight that following a plant-based dietary pattern considering genetics appears to be a protective factor against the risks of cardiometabolic abnormalities.

Effect of Sweet Persimmon Wine on Alcoholic Fatty Livers in Rats (흰쥐에서 단감발효주가 알코올성 지방간 형성에 미치는 영향)

  • Nam, Kyung-Sook;Kim, Ju-Youn;Noh, Sang-K.;Park, Joong-Hyeop;Sung, Eon-Gi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1548-1555
    • /
    • 2011
  • Persimmons are shown to contain high levels of phenolics. The present study was designed to investigate if a sweet persimmon wine (SPW) would affect the development of alcoholic fatty liver in rats. Initially, male Sprague-Dawley rats were housed singly in stainless steel wire-bottomed cages in a room of controlled temperature and lighting. The rats had free access to a nutritionally adequate AIN-93G diet and deionized water. After the acclimatization period, rats were weight-matched and assigned to the following three groups: two groups were fed 6.7% ethanol or the caloric equivalent of maltose-dextrin in a Lieber-DeCarli diet and the other group was fed the isocaloric Lieber-DeCarli diet containing SPW at the same ethanol level. All three groups were fed their respective diets for 6 weeks. Serum transaminase, cholesterol, and triglyceride levels were measured. Liver lipids and histology were assessed at 6 weeks. The total phenolic content and the antioxidant and free radical scavenging activities of SPW were determined. SPW significantly increased antioxidant and free radical scavenging activities. As markers of liver injury, serum alanine and aspartate transminases were markedly lowered by SPW at 6 weeks. SPW significantly reduced the serum levels of serum cholesterol and triglyceride compared to ethanol treatment. SPW delayed the development of an alcoholic fatty liver by reversing fat accumulation in the liver, as evidenced in histological observations. Taken together, SPW seems to protect the liver from becoming fatty by alleviating fatty liver symptoms and lowering hepatic and serum lipid levels. Such a protective effect of SPW appears to be in part due to its phenolics.

Hepatoprotective Effects of Oyster Hydrolysate on Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Injury in Mice (Lipopolysaccharide/D-Galactosamine에 의해 유도된 급성 간 손상 생쥐모델에서 굴가수분해물의 간 보호 효과)

  • Ryu, Ji Hyeon;Kim, Eun-Jin;Xie, Chengliang;Nyiramana, Marie Merci;Siregar, Adrian S.;Park, Si-Hyang;Cho, Soo Buem;Song, Dae Hyun;Kim, Nam-Gil;Choi, Yeung Joon;Kang, Sang Soo;Kang, Dawon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.659-670
    • /
    • 2017
  • Oxidative stress and inflammation are key factors responsible for progression of liver injury. A variety of functions of oyster hydrolysate (OH) are affected by their antioxidant and anti-inflammatory activities. However, little is known regarding the effects of OH on a liver injury model. This study was performed to evaluate the effects of OH on acute liver injury induced by lipopolysaccharide/D-galactosamine (LPS/D-GalN) in mice. Experimental groups were divided into six groups as follows (each group, n=10): control (saline), LPS/D-GalN, LPS/D-GalN+OH (100 mg/kg), LPS/D-GalN+OH (200 mg/kg), LPS/D-GalN+OH (400 mg/kg), and LPS/D-GalN+silymarin (25 mg/kg, positive control). The experimental acute liver injury model was induced with LPS ($1{\mu}g/kg$) and D-GalN (400 mg/kg). We first analyzed antioxidant and anti-inflammatory activities in OH. OH showed high DPPH and ABTS radical scavenging activities and reduced ROS generation in Chang cells in a dose-dependent manner. In addition, OH showed anti-inflammatory activities, such as inhibition of cyclooxygenase-2 and 5-lipooxygenase. Treatment with OH down-regulated tumor necrosis factor $(TNF)-{\alpha}$, interleukin (IL)-6, and $IL-1{\alpha}$ expression levels in LPS-stimulated RAW264.7 cells. OH significantly reduced LPS/D-GalN-induced increases in the concentrations of alanine transaminase and aspartate aminotransferase in serum. In the LPS/D-GalN group, liver tissues exhibited apoptosis of hepatocytes with hemorrhages. These pathological alterations were ameliorated by OH treatment. Consistently, hepatic catalase activity was low in the LPS/D-GalN group compared to the control group, and catalase activity was significantly restored by OH treatment (P<0.05). Furthermore, OH markedly reduced the LPS/D-GalN-induced increase in $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 levels in liver tissue. Taken together, these results show that OH has hepatoprotective effects on LPS/D-GalN-induced acute liver injury via inhibition of oxidative stress and inflammation, suggesting that OH could be used as a health functional food and potential therapeutic agent for acute liver injury.