• Title/Summary/Keyword: aircraft wing structure

Search Result 96, Processing Time 0.023 seconds

Structural Development for Human Powered Aircraft (인간동력항공기 구조 개발)

  • Shin, Jeong Woo;Woo, Dae Hyun;Park, Ill Kyung;Lee, Mu-Hyoung;Lim, Joosup;Park, Sang Wook;Kim, Sung Joon;Ahn, Seok Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2013
  • Human Powered Aircraft (HPA) should be light in weight and have high efficiency because power source of propulsion is human muscles. Airframe structure takes up most of empty weight of aircraft, so weight reduction of structure is very important issue for HPA. In this paper, design/analysis/test procedures for ultra light weight structure of the HPA developed by Korea Aerospace Research Institute (KARI) are explained briefly. Structural design is conducted through case studies on HPA in the USA and Japan. Loads analysis is performed to calculate design loads which is needed for structural design and analysis. Structural analysis is conducted for structure sizing. Static strength test of main wing spar which is primary structure of wing is performed to verify structural integrity.

Fatigue Life and Stress Spectrum of Wing Structure of Aircraft (항공기 주익 구조물의 응력스펙트럼 및 피로수명 추정에 관한 연구)

  • Kang, Ki-Weon;Koh, Seung-Ki;Choi, Dong-Soo;Kim, Tae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1185-1191
    • /
    • 2010
  • Aged aircraft have several cracks as a results of long-term service, and these cracks affect the safety and decrease the rate of operation of the aircraft. To solve these problems, crack propagation analysis should be performed to determine the service life at fatigue critical location(FCL). It is, however, almost impossible to obtain the stress spectrum, which is crucial for crack propagation analysis of the FCLs of wing structure of aged aircraft. In this study, to analyze the fatigue crack propagation behavior at the FCL of an aged aircraft, first finite element analysis is performed for a 3D geometry model of the aircraft wing structure, which is obtained using CATIA based on the paper drawings. Then, the transfer function and stress-spectrum of the FCL are derived using the load factor data and the FEA results. Finally, the crack propagation rates of the FCL are evaluated using the commercial software, NASGRO 6.0.

Dynamic Equivalent Continuum Modeling of a Box-Beam Typed Wing (Box-Beam 형상 날개의 동적 등가연속체 모델링에 관한 연구)

  • 이우식;김영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2704-2710
    • /
    • 1993
  • A simple and straightforward method is introduced for developing continuum beam-rod model of a box-beam typed aircraft wing with composite layered skin based on "energy equivalence." The equivalent continuum structral properties are obtained from the direct comparison of the reduced stiffness and mass matrices for box-beam typed wing with those for continuum beam-rod model. The stiffness and mass matrices are all represented in terms of the continuum degrees-of freedom defined in this paper. The finite-element method. The advantage of the present continuum method is to give every continuum structural properties including all possible coupling terms which represent the couplings between different deformations. To evaluate the continuum method developed in this paper, free vibration analyses for both continuum beam-rod and box-beam are conducted. Numerical tests show that the present continuum method gives very reliable structural and dynamic properties compared to the results by the conventional finite-element analysis. analysis.

Flutter Analysis of Flexible Wing for Electric Powered UAV (전기동력무인기 유연날개 플러터 해석)

  • Lee, Sang-Wook;Shin, Jeong Woo;Choi, Yong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.189-192
    • /
    • 2014
  • Recently, development of electric powered UAV for high altitude and long endurance mission has been conducted worldwide. Long endurance requirement necessitates high lift over drag (L/D) aerodynamic characteristics and lightweight structures, leading to highly flexible wings with high aspect ratio. These highly flexible wings increase the danger of catastrophic aircraft failure due to flutter, which is a dynamic aeroelastic instability occurring from the interaction of aerodynamic, inertial, and elastic forces acting on the aircraft flying through the air. In this paper, flexible wing for electric powered UAV whose skin is fabricated using mylar film for lightweight design is briefly explained. In addition, flutter analysis procedures and results for the flexible wing in order to substantiate the aeroelastic stability requirements are presented.

  • PDF

Airframe Structure Development of Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3 기체구조 개발)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Sang Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • Research for solar-powered high altitude long endurance(HALE) UAV was conducted by Korea Aerospace Research Institute(KARI), and the EAV-3 with 19.5m wing span was developed. For HALE flight, aircraft should be lightly designed. Especially, airframe structure that accounts for a large portion of the total weight of aircraft should be lightweight. In this paper, development process of airframe structure for solar-powered HALE UAV, EAV-3, is described briefly. Domestic developed T-800 grade CFRP(Carbon Fiber Reinforced Plastic) composite material with high modulus and strength was used to design main load carrying structures. Flightloads analysis that takes into account large structural deformation was carried out. Stress and flutter analyses for airframe structure sizing were conducted. Static strength test for main wing and aircraft ground vibration test were conducted successfully and structural integrity was secured.

Validation of a smart structural concept for wing-flap camber morphing

  • Pecora, Rosario;Amoroso, Francesco;Amendola, Gianluca;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.659-678
    • /
    • 2014
  • The study is aimed at investigating the feasibility of a high TRL solution for a wing flap segment characterized by morphable camber airfoil and properly tailored to be implemented on a real-scale regional transportation aircraft. On the base of specific aerodynamic requirements in terms of target airfoil shapes and related external loads, the structural layout of the device was preliminarily defined. Advanced FE analyses were then carried out in order to properly size the load-carrying structure and the embedded actuation system. A full scale limited span prototype was finally manufactured and tested to: ${\bullet}$ demonstrate the morphing capability of the conceived structural layout; ${\bullet}$ demonstrate the capability of the morphing structure to withstand static loads representative of the limit aerodynamic pressures expected in service; ${\bullet}$ characterize the dynamic behavior of the morphing structure through the identification of the most significant normal modes. Obtained results showed high correlation levels with respect to numerical expectations thus proving the compliance of the device with the design requirements as well as the goodness of modeling approaches implemented during the design phase.

A Study on Reconstructing Impact Forces of an Aircraft Wing Using Impact Response Functions and Regularization Methods (충격응답함수와 조정법을 이용한 항공기 날개의 충격하중 복원 연구)

  • 박찬익
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.41-46
    • /
    • 2006
  • The capability for reconstructing impact forces of an aircraft wing using impact response functions and regularization methods were examined. The impact response function which expresses the relation between the structure response and the impact force was derived using the information on mass and stiffness data of a finite element model for the wing. Iterative Tikhonov regularization method and generalized singular value decomposition method were used to inverse the impact response function that was generally ill-posed. For the numerical verification, a fighter aircraft wing was used. Strain and deflection histories obtained from finite element analysis were compared with the results calculated using impact response functions. And the impact forces were reconstructed with the strain histories obtained from finite element analysis. The numerical verification results showed that this method can be used to monitor impact forces on aircraft structures.

Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft (회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선)

  • Bang, Daehan;Lee, Sook;Lee, Sanghoon;Choi, Sangmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This paper presents the design improvements made for the crack which is in the mounting structure of the mechanical structure of rotary wing aircraft. The doubler added to the mounting structure of rotary wing aircraft was designed and manufactured based on the load at the development stage, and a crack was found in the surface of doubler at a certain point during the operation of the aircraft. To identify the cause of the crack, the initial deformation of the structure, which may occur as a result of fastening condition, was considered and the dynamic analysis of the natural frequency of the structure comparing to the blade passing frequency of the aircraft were additionally reviewed. As a result of this study, a shim was added to remove the physical gap of the fastening area, and a doubler with thickened reinforcement was installed. The increase of structural strength is shown by reviewing the results of dynamic analysis for the structural verification of the improved design, and the fatigue evaluation complied to the requirement of the aircraft lifetime.

Design Improvement about Abnormal Lighting of Anti-Collision Light for a Rotary-wing Aircraft (회전익 항공기 충돌방지등의 이상점등에 대한 설계 개선)

  • Kim, Young Mok;Seo, Young Jin;Lee, Yoon Woo;Lee, Joo Hyung;Choi, Doo-Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.79-86
    • /
    • 2019
  • An anti-collision light of a rotary-wing aircraft is used for the purpose of preventing collision during the operation of an aircraft and is a key component to ensure flight safety. The anti-collision lights of the Korean Utility Helicopter (KUH) consist of upper and lower lights, and the power supply of anti-collision lights mounted on the aircraft. The anti-collision light is designed as a dual structure capable of brightness control and selective lighting. During the operation after delivery of the aircraft, abnormal lighting of anti-collision light occurred. In this paper, a comprehensive review of the aircraft system and component level was conducted to solve these phenomena at first. Then, the causes of anti-collision light anomalies were analyzed and the design changes are presented. The validity of design changes has been verified through the component and aircraft system ground/flight test.

Reliability Based Design Optimization of the Flexible Wing (유연 날개의 확률기반 최적 설계)

  • Lee Jaehun;Kim Suwhan;Kwon Jmg Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • In this study, the reliablility based design optimization is peformed for an aircraft wing. The flexiblility of the wing was assumed by considering the interaction modeled by static aeroelasticity between aerodynamic forces and the structure. For a multidisciplinary design optimization the results of aerodynamic analysis and structural analysis were included in the optimization formulation. The First Order Reliability Method(FORM) was employed to consider the uncertainty of the designed points.

  • PDF