• Title/Summary/Keyword: aircraft impact

Search Result 309, Processing Time 0.024 seconds

Low-Level Wind Shear (LLWS) Forecasts at Jeju International Airport using the KMAPP (고해상도 KMAPP 자료를 활용한 제주국제공항에서 저층 윈드시어 예측)

  • Min, Byunghoon;Kim, Yeon-Hee;Choi, Hee-Wook;Jeong, Hyeong-Se;Kim, Kyu-Rang;Kim, Seungbum
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Low-level wind shear (LLWS) events on glide path at Jeju International Airport (CJU) are evaluated using the Aircraft Meteorological Data Relay (AMDAR) and Korea Meteorological Administration Post-Processing (KMAPP) with 100 m spatial resolution. LLWS that occurs in the complex terrains such as Mt. Halla on the Jeju Island affects directly aircraft approaching to and/or departing from the CJU. For this reason, accurate prediction of LLWS events is important in the CJU. Therefore, the use of high-resolution Numerical Weather Prediction (NWP)-based forecasts is necessary to cover and resolve these small-scale LLWS events. The LLWS forecasts based on the KMAPP along the glide paths heading to the CJU is developed and evaluated using the AMDAR observation data. The KMAPP-LLWS developed in this paper successfully detected the moderate-or-greater wind shear (strong than 5 knots per 100 feet) occurred on the glide paths at CJU. In particular, this wind shear prediction system showed better performance than conventional 1-D column-based wind shear forecast.

Emission Estimation for Airports in Korea Using AEIC Program (AEIC 프로그램을 사용한 국내 공항 항공 온실가스 배출량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated aircraft emission estimation and prediction as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. We obtained airline flight schedules for all the airports in Korea that are included in OAG data. Fuel burn and emission index of LTO flight which contains take off, climb and approach under 3000ft and Non LTO flight which contains climb, cruise and descent over 3000ft for all the airports in Korea in 2005 were estimated and analysed for each condition using AEIC software which has been developed by MIT Lab for Aviation and Environment.

Dealing with Unruly Behavior on Board Aircraft: A Chinese Perspective

  • Qin, Huaping
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.27 no.2
    • /
    • pp.193-209
    • /
    • 2012
  • China's airline industry is experiencing a booming development as one hand, on the other hand the incidents involving unruly behaviour on board aircraft also becomes a growing concern for the whole industry. The thesis examines the basic issues concerning the unruly behaviour, such as definition of unruly behaviour, the impact and root causes of unruly behaviour. Then it focuses on the China's legal sources governing the problem of unruly behaviour. Generally speaking, China's legislation with this respect is systematic and self-contained, except some minor shortcomings which need to be revised. Finally the thesis holds the view that the preventative measures jointly contributed by all the parties concerned are something more important than the legislation itself.

  • PDF

Analysis of low level cloud prediction in the KMA Local Data Assimilation and Prediction System(LDAPS) (기상청 국지예보모델의 저고도 구름 예측 분석)

  • Ahn, Yongjun;Jang, Jiwon;Kim, Ki-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.124-129
    • /
    • 2017
  • Clouds are an important factor in aircraft flight. In particular, a significant impact on small aircraft flying at low altitude. Therefore, we have verified and characterized the low level cloud prediction data of the Unified Model(UM) - based Local Data Assimilation and Prediction System(LDAPS) operated by KMA in order to develop cloud forecasting service and contents important for safety of low-altitude aircraft flight. As a result of the low level cloud test for seven airports in Korea, a high correlation coefficient of 0.4 ~ 0.7 was obtained for 0-36 leading time. Also, we found that the prediction performance does not decrease as the lead time increases. Based on the results of this study, it is expected that model-based forecasting data for low-altitude aviation meteorology services can be produced.

An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft (회전익 항공기 전륜착륙장치 단속거동 현상 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lee, Yoon-Woo;Yoon, Jong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

The Impact of Aircraft Spare Engine & Module's Inventory Level on Operational Availability (항공기 예비엔진 및 모듈 재고수준이 운용가용도에 미치는 영향)

  • Lee, Sang-Jin;Bai, Ju-Kun;Kim, Min-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.3
    • /
    • pp.333-339
    • /
    • 2010
  • It is difficult to determine an optimal inventory level of aircraft engine and modules to achieve the target operational availability since F100-PW-200 & 229 engines of the F-16 & KF-16 aircraft are consisted of 5 modules with different failure rates and costs. This study presents a decision model, combining an integer programming problem and a regression metamodel. Data for the metamodel was attained from results of a simulation model, that represents operational and repair process of F-16 and KF-16. The objective function of an integer programming problem is maximizing the operational availability, representing pessimistic circumstances. Finally, an integer programming problem with a metamodel can make an optimal decision of the inventory level.

A critical comparison of reflectometry methods for location of wiring faults

  • Furse, Cynthia;Chung, You Chung;Lo, Chet;Pendayala, Praveen
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.25-46
    • /
    • 2006
  • Aging wiring in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. is among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on wire and cables. This paper compares Time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), spread spectrum time domain reflectometry (SSTDR) and capacitance sensors in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables. The results in this paper can be extrapolated to other types of wire and cable systems.

On the use of the wave finite element method for passive vibration control of periodic structures

  • Silva, Priscilla B.;Mencik, Jean-Mathieu;Arruda, Jose R.F.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.299-315
    • /
    • 2016
  • In this work, a strategy for passive vibration control of periodic structures is proposed which involves adding a periodic array of simple resonant devices for creating band gaps. It is shown that such band gaps can be generated at low frequencies as opposed to the well known Bragg scattering effects when the wavelengths have to meet the length of the elementary cell of a periodic structure. For computational purposes, the wave finite element (WFE) method is investigated, which provides a straightforward and fast numerical means for identifying band gaps through the analysis of dispersion curves. Also, the WFE method constitutes an efficient and fast numerical means for analyzing the impact of band gaps in the attenuation of the frequency response functions of periodic structures. In order to highlight the relevance of the proposed approach, numerical experiments are carried out on a 1D academic rod and a 3D aircraft fuselage-like structure.

Performance Analysis of Smart Impact Damper (지능형 완충기의 특성 해석)

  • ;;Y.T. Choi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.323-327
    • /
    • 2001
  • Electrorheological(ER) and magnetorheological(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. Controllable fluids such as ER and MR fluids have received considerable attention as several components of engineering devices. One of them is a smart impact damper using ER/MR fluids. Impact damper system can be used in the joint mechanism of railroad vehicle, protection equipment of elevator's drop, and launch equipment of aircraft. This paper presents the results of an analytical study of the performance of a smart impact damper to suppress vibration during impact excitation. The damping capabilities of MR impact damper for variable applied current are analyzed using Bingham model under sudden impact load.

  • PDF

A Study on Compressive Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 압축 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Kim, Sanghoon;Lee, Haseung
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • The laminated sequence and thickness of a composite structure is an important design parameter which affect the strength and impact damage. In this study, it was investigated the residual strength of carbon fiber laminate after impact damage by the experimental investigation. The tensile strength test and compressive strength test were used to find the mechanical properties, previously. Impact test was performed using low-velocity drop-weight test equipment. The impact damages were finally assessed by the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the impact damage.

  • PDF