Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.3.277

Low-Level Wind Shear (LLWS) Forecasts at Jeju International Airport using the KMAPP  

Min, Byunghoon (High Impact Weather Research Department, National Institute of Meteorological Sciences)
Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Choi, Hee-Wook (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Jeong, Hyeong-Se (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kim, Kyu-Rang (High Impact Weather Research Department, National Institute of Meteorological Sciences)
Kim, Seungbum (High Impact Weather Research Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.30, no.3, 2020 , pp. 277-291 More about this Journal
Abstract
Low-level wind shear (LLWS) events on glide path at Jeju International Airport (CJU) are evaluated using the Aircraft Meteorological Data Relay (AMDAR) and Korea Meteorological Administration Post-Processing (KMAPP) with 100 m spatial resolution. LLWS that occurs in the complex terrains such as Mt. Halla on the Jeju Island affects directly aircraft approaching to and/or departing from the CJU. For this reason, accurate prediction of LLWS events is important in the CJU. Therefore, the use of high-resolution Numerical Weather Prediction (NWP)-based forecasts is necessary to cover and resolve these small-scale LLWS events. The LLWS forecasts based on the KMAPP along the glide paths heading to the CJU is developed and evaluated using the AMDAR observation data. The KMAPP-LLWS developed in this paper successfully detected the moderate-or-greater wind shear (strong than 5 knots per 100 feet) occurred on the glide paths at CJU. In particular, this wind shear prediction system showed better performance than conventional 1-D column-based wind shear forecast.
Keywords
Low-level wind shear; Jeju International Airport; Aircraft Meteorological Data Relay; Korea Meteorological Administration Post-Processing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Drue, C., W. Frey, A. Hoff, and T. Hauf, 2008: Aircraft type-specific errors in AMDAR weather reports from commercial aircraft. Q. J. R. Meteorol. Soc., 134, 229-239.   DOI
2 ICAO, 2005: Manual on low-level wind shear, 1st edition. International Civil Aviation Organization, 213 pp.
3 Keller, T. L., S. B. Trier, W. D. Hall, R. D. Sharman, M. Xu, and Y. Liu, 2015: Lee waves associated with a commercial jetliner accident at Denver International Airport. J. Appl. Meteor. Climatol., 54, 1373-1392, doi:10.1175/JAMC-D-14-0270.1.   DOI
4 Bowles, R. L., 1990b: Windshear detection and avoidance: airborne systems survey. Conf. Paper, 29th IEEE Conference on Decision and Control, Honolulu, HI, USA, 708-736.
5 Kessler, E., 1990: Low-level windshear alert systems and doppler radar in aircraft terminal operations. J. Aircraft, 27, 423-428.   DOI
6 Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.   DOI
7 Lewis, M. S., P. A. Robinson, D. A. Hinton, and R. L. Bowles, 1994: The relationship of an integral wind shear hazard to aircraft performance limitations. NASA TM-109080, 16 pp.
8 Kim, J.-H., H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2014: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western pacific cyclone. Mon. Wea. Rev., 142, 2794-2813, doi:10.1175/MWRD-14-00008.1.   DOI
9 Lee, K.-O., S. Shimizu, M. Maki, C.-H. You, H. Uyeda, and D.-I. Lee, 2010: Enhancement mechanism of the 30 June 2006 precipitation system observed over the northwestern slope of Mt. Halla, Jeju Island, Korea. Atmos. Res., 97, 343-358, doi:10.1016/j.atmosres.2010.04.008.   DOI
10 Lee, K.-O., H. Uyeda, and D.-I. Lee, 2014: Effect of an isolated elliptical terrain (Jeju Island) on rainfall enhancement in a moist environment. Tellus A, 66, 20484, doi:10.3402/tellusa.v66.20484.   DOI
11 Lilly, D. K., 1978: A Severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 59-77.   DOI
12 NIMS, 2017: Korea Meteorological Administration Post-Processing (KMAPP) user manual. NIMS Tech. Rep., 11-1360620-000101-01, 14 pp (in Korean).
13 Pattantyus, A. K., S. Chiao, and S. Czyzyk, 2011: Improving high-resolution model forecasts of downslope winds in the Las Vegas valley. J. Appl. Meteor. Climatol., 50, 1324-1340, doi:10.1175/2011JAMC2586.1.   DOI
14 Rahn, D. A., and C. J. Mitchell, 2016: Diurnal climatology of the boundary layer in southern California using AMDAR temperature and wind profiles. J. Appl. Meteor. Climatol., 55, 1123-1137, doi:10.1175/JAMCD-15-0234.1.   DOI
15 Regmi, R. P., and S. Maharjan, 2015: Trapped mountain wave excitations over the Kathmandu valley, Nepal. Asia-Pac. J. Atmos. Sci., 51, 303-309, doi:10.1007/s13143-015-0078-1.   DOI
16 Wilson, J. W., R. D. Roberts, C. Kessinger, and J. McCarthy, 1984: Microburst wind structure and evaluation of doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898-915.   DOI
17 Shun, C. M., and P. W. Chan, 2008: Applications of an infrared doppler lidar in detection of wind shear. J. Atmos. Oceanic. Technol., 25, 637-655.   DOI
18 Strajnar, B., 2012: Validation of Mode-S meteorological routine air report aircraft observations. J. Geophys Res. Atmos., 117, D23110, doi:10.1029/2012JD018315.   DOI
19 Tse, S. M., M. Hagio, and Y. Maeda, 2019: Windshear detection by terminal doppler weather radar during tropical cyclone Mujigae in 2015. Meteorol. Appl., 26, 620-631, doi:10.1002/met.1789.   DOI
20 WMO, 2014: The benefits of AMDAR data to meteorology and aviation. WMO Tech. Rep., 2014-1, 7 pp.
21 Zhang, Y., D. Li, Z. Lin, J. A. Ananello Jr., and Z. Gao, 2019: Development and evaluation of a long-term data record of planetary boundary layer profiles from aircraft meteorological reports. J. Geophys. Res., 124, 2008-2030, doi:10.1029/2018JD029529.   DOI
22 Chan, P. W., 2012: A significant wind shear event leading to aircraft diversion at the Hong Kong international airport. Meteorol. Appl., 19, 10-16, doi:10.1002/met.242.   DOI
23 Boilley, A., and J.-F. Mahfouf, 2013: Wind shear over the Nice Cote d'Azur airport: case studies. Nat. Hazards Earth Syst. Sci., 13, 2223-2238, doi:10.5194/nhess-13-2223-2013.   DOI
24 Bowles, R. L., 1990a: Reducing windshear risk through airborne systems technology. Conf. Paper, The 17th Congress of the ICAS, Stockholm, Sweden, 27 pp.
25 Carruthers, D., A. Ellis, J. Hunt, and P. W. Chan, 2014: Modelling of wind shear downwind of mountain ridges at Hong Kong International Airport. Meteorol. Appl., 21, 94-104, doi:10.1002/met.1350.   DOI
26 Chan, P. W., and Y. F. Lee, 2011: Application of a groundbased, multi-channel microwave radiometer to the alerting of low-level windshear at an airport. Meteorol. Z., 20, 423-429, doi:10.1127/0941-2948/2011/0275.   DOI
27 Chen, F., H. Peng, P.-W. Chan, and X. Zeng, 2019: Lowlevel wind effects on the glide paths of the north runway of HKIA: A wind tunnel study. Build. Environ., 164, 106337, doi:10.1016/j.buildenv.2019.106337.   DOI
28 Ding, J., X.-Y. Zhuge, Y. Wang, and A. Xiong, 2015: Evaluation of Chinese Aircraft Meteorological Data Relay (AMDAR) weather reports. J. Atmos. Oceanic Technol., 32, 982-992, doi:10.1175/JTECH-D-14-00145.1.   DOI