Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.
Many studies have been conducted on extracting buildings from ALS(Airborne Laser Scanning) data. After segmentation or classification of building points, additional steps such as generalization is required to get straight boundary lines that better approximate the real ones. In much research, orthogonal constraints are used to improve accuracies and qualities. All the lines of the building boundaries are assumed to be either parallel or perpendicular mutually. However, this assumption is not valid in many cases and more complex shapes of buildings have been increased. A new algorithm is presented that is applicable to various complex buildings. It consists of three steps of boundary tracing, grouping, and regularization. The performance of our approach was evaluated by applying the algorithm to some buildings and the results showed that our proposed method has good potential for extracting building boundaries of various shapes.
Journal of Korean Society for Geospatial Information Science
/
v.14
no.4
s.38
/
pp.37-44
/
2006
To use surveying data obtained from different sensors and different techniques, it is a pre-requite step that register them in a common coordinate system. For this purpose, we developed methodologies to register airborne photos, ALS (Airborne Laser Scanning) data and digital maps. To achieve this, conjugate features from these data should be extracted in advance. In this study, linear features are chosen as conjugate features. Based on such a selection strategy, a simple and robust algorithm is proposed for extracting such features from ALS data. Then, to register them, observation equations are established from similarity measurements of the extracted features and the results was evaluated statistically. The results clearly demonstrate that the proposed algorithms are appropriate to register these data.
An approach for quickly updating GIS building data using high resolution remotely sensed data is proposed in this paper. High resolution remotely sensed data could be aerial photographs, satellite images and airborne laser scanning data. Data from different types of sensors are integrated in building extraction. Based on the extracted buildings and the outdated GIS database, the change-detection-template can be automatically created. Then, GIS building data can be fast updated by semiautomatically processing the change-detection-temp late. It is demonstrated that this approach is quick, effective and applicable.
Though the airborne laser scanning (ALS) technique is becoming more popular in many applications, horizontal accuracy of points scanned by the ALS is not yet satisfactory when compared with the accuracy achieved for vertical positions. One of the major reasons is the drift that occurs in the inertial measurement unit (IMU) during the scanning. This paper presents an algorithm that adjusts for the error that is introduced mainly by the drift of the IMU that renders systematic differences between strips on the same area. For this, we set up an observation equation for strip-wise adjustments and completed it with tie point and control point coordinates derived from the scanned strips and information from aerial photos. To effectively capture the tie points, we developed a set of procedures that constructs a digital surface model (DSM) with breaklines and then performed feature-based matching on strips resulting in a set of reliable tie points. Solving the observation equations by the least squares method produced a set of affine transformation equations with 6 parameters that we used to transform the strips for adjusting the horizontal error. Experimental results after evaluation of the accuracy showed a root mean squared error (RMSE) of the adjusted strip points of 0.27 m, which is significant considering the RMSE before adjustment was 0.77 m.
Active sensors are rapidly conquering a share on the remote sensing market and offer among others new possibilities toward automatically acquiring 3D building data. Better dissemination of information about new technological developments can possibly be achieved by short distance-learning courses. The paper describes the didactic and technical aspects of a course we have designed and conducted on airborne laser scanning and interferometric SAR. The building extraction application is a good example to illustrated the added value of short electronic-learning courses above simply publishing (digital) papers.
Laser scanning is a new technology for obtaining Digital Surface Models(DSM) of the earth surface.It is a fast method for sampling the earth surface with high density and high point accuracy. This paper is for buildings extraction from LiDAR points data. The core part of building construction is based on a parameters filter for distinguishing between terrain and non-terrain laser points. The 3D geometrical properties of the building facades are obtained based on plane fitting using least-squares adjustment. The reconstruction part of the procedure is based on the adjacency among the roof facades. Primitive extraction and facade intersections are used for building reconstruction. For overcome the difficulty just reconstruct of laser points data used with digital camera images. Also, 3D buildings of city area reconstructed using digital map. Finally, In this paper show 3D building Modeling using digital map and LiDAR data.
Journal of Korean Society for Geospatial Information Science
/
v.17
no.3
/
pp.109-114
/
2009
Although island is great worth in ecology, environmental conservation and important territory as a national land for developing the marine, the bottom of the sea and also ecological studying field for the ages to come, it has not been managed because of lack of a scientific surveying. In the case of a cadastral record, inaccessible islands have not been registered in current cadastral record because of the limit of surveying technology in 1910. Therefore, a scientific investigation and systematic management about unregistered islands are necessary. But, a airborne laser scanning system is possible to acquire an accurate positions with digital images about inaccessible islands. Therefore, scientific detection of unregistered islands became possible. This paper presented the results of the shoreline extraction around the Heuksan island using Lidar data and the detection of unregistered islands comparing the cadastral map to the ortho-image. Also, we presented the extraction technique of unregistered islands by calculating their positions and areas. As a result, we extracted effectively 16 unregistered islands around the Heuksan island.
This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were ${\pm}$8.1㎝, ${\pm}$24.7㎝, ${\pm}$35.9㎝, respectively.
NASA, NSF and USGS jointly conducted a LIDAR survey over several sites in the Antarctic Dry Valleys and its vicinity, acquiring numerous surface points by NASA's Airborne Topographic Mapper (ATM) conical laser scanning altimetry system. The data set have high blunder ratio, and the conical scanning pattern resulted large variation of the point densities. Hence, to reduce the undesirable effects due to these characteristics and process the huge number of points with reasonable time and resources, we developed a novel approach to generate large-scale and high-resolution DEMs in robust, efficient and nearly automatic manners. Based on this approach we produced DEMs and then verified them with reference data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.