A Study on Automatic Extraction of Buildings Using LIDAR with Aerial Imagery

Young-jin Lee

ETRI(Electronics and Telecommunications Research Institute) 161 Gajeong-dong Yuseong-gu, Daejeon 305-350, Korea yjinlee@etri.re.kr

Woosug Cho Department of Civil Engineering, Inha University 253 Yonghyun-dong Nam-gu, Incheon 402-751, Korea wcho@inha.ac.kr

Soo Jeong, Kyung-ok Kim ETRI(Electronics and Telecommunications Research Institute) 161 Gajeong-dong Yuseong-gu, Daejeon 305-350, Korea <u>soo@etri.re.kr</u>, <u>kokim@etri.re.kr</u>

Abstract: This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were ± 8.1 cm, ± 24.7 cm, ± 35.9 cm, respectively. Keywords: LIDAR, Building Extraction, Airborne Laser Scanning.

1. Introduction

In photogrammetric practice, manual digitizing with stereo image is a typical way of extracting building. Since manual building extraction is very costly and time consuming, an automated procedure is in great demand. However, this is one of the most difficult tasks in digital photogrammetry. It could be said that automatic building extraction using LIDAR data has certain advantage over traditional photogrammetric technique when spatial res olution of the LIDAR data is high enough to extract buildings. The purpose of this investigation is to develop a robust procedure that reconstructs building by fusing LIDAR data with panchromatic aerial image.

2. Algorithm for Building Extraction

Building extraction algorithm that proposed in this paper is divided into three stages by form of used data. At the point level process, we eliminate gross error and extract building candidate points from LIDAR point data. At the polygon level process, we separate building polygon and non-building polygon and establish relationship of inclusion among polygons such as apartment rooftop and elevator tower on the apartment rooftop using area condition. At the parameter level process, we extract building boundary using edge information with projected encasing polygons. Figure 1 shows the process of proposed building extraction process.

Fig. 1. Proposed building extraction process.

1) Point level process

1. Contiguity relation of a point

When process LIDAR point data directly, it is essential to prescribe contiguity relation of a point for improvement of data processing speed. In this study, we divide the object area into lattice and then, each lattice have index of points that exist in relevant space of the lattice, and each point have index of lattice that the point located in. Direct processing of point data is available at the fast speed using index of each point and lattice.

2. Eliminate gross error

To remove gross error, we find gross error candidates using statistical technique and then, find and remove isolated points among these candidates.

3. Extraction of building candidate points

It is possible to separate buildings candidate points from LIDAR data using assumption that building is higher than surrounding. In this study we use local maxima filter to extract building candidate points.

Fig. 2. Building candidate points.

4. Grouping

The purpose of grouping is to classify all the building candidate points into groups as on the same rooftop. This process is accomplished at the fast speed using predefined contiguity relation.

5. Generation of encasing polygon

We use encasing polygon algorithm that apply minimum distances condition to make polygon with building points.

2) Polygon level process

1. Tree Removal

To remove tree polygon we apply several constraints such as area and circularity. Remove polygons that have smaller area than predefined minimum area of building and have complex boundary using circularity.

2. Polygon merging

The purpose of polygon merging is to establish relationship of inclusion among polygons such as apartment rooftop and elevator tower on the rooftop using area condition. Figure 3 shows the result.

Encasing Polygon Fig. 3. Polygon merging.

a.

3) Parameter space level process

1. Find edge candidates

To find edge equivalent to building boundary among a lot of edges, we project all the polygons left at the poly-

gon level process to image space through collinearity condition equation and then, apply morphology dilation to find edge candidates.

Fig. 4. Edge candidates.

2. Extraction of building boundary

To extract building boundary we apply hough transformation and then, find accumulator cell of maximum value. Straight line relevant to this cell is longest side of the building boundary. Also, applying angle and distance condition on the accumulator cell we could extract the other side of building boundaries. Figure 5 shows the result.

Building Boundaries

Fig. 5. Building boundary.

3. Experiment Results

1) Data

Test area is Chungjoo city in republic of Korea. Point density of LIDAR data is 1.22point/m^2 and scale of æ-rial photo is 1/5000.

Left Photo (C5-11)

Right Photo (C5-10)

Fig. 5. Aerial imagery of test area.

Fig. 5. LIDAR data of test area.

2) Results

To verify accuracy of extracted building corner points, we calculate ground coordinate of corner points through space intersection and then, compare that with the result from digital photogrammetry system. Table 1. shows the result.

Table 1. Accuracy of building corner points extracted by proposed algorithm.

ID	Reference			Calculated			Difference		
	X(m)	Y(m)	Z(m)	X(m)	Y(m)	Z(m)	X(m)	Y(m)	Z(m)
a1	241126.787	349869.228	87.856	241126.692	349869.250	87.697	0.095	-0.023	0.159
a2	241126.918	349858.467	87.729	241126.912	349858.099	87.710	0.005	0.367	0.019
a3	241215.240	349859.607	87.824	241215.434	349859.311	88.485	-0.194	0.296	-0.661
a4	241215.046	349870.639	87.824	241215.239	349870.436	88.504	-0.193	0.203	-0.680
b1	241139.709	349841.715	87.051	241139.707	349841.609	87.052	0.002	0.106	-0.001
b2	241139.929	349830.831	87.085	241139.924	349830.516	87.066	0.004	0.315	0.019
b3	241215.671	349832.156	86.932	241215.756	349831.622	87.588	-0.084	0.535	-0.656
b4	241215.518	349842.942	87.277	241215.562	349842.749	87.602	-0.044	0.193	-0.325
c1	241133.873	349813.833	86.480	241133.965	349813.717	86.646	-0.092	0.117	-0.166
c2	241134.004	349803.174	86.349	241134.099	349803.269	86.535	-0.095	-0.095	-0.185
c3	241222.434	349804.583	86.463	241222.518	349804.650	87.153	-0.084	-0.068	-0.690
c4	241222.311	349815.282	86.624	241222.320	349815.089	87.122	-0.009	0.192	-0.498
d1	241121.487	349777.551	91.736	241121.485	349777.446	91.737	0.001	0.105	-0.001
d2	241121.602	349766.501	91.750	241121.706	349766.449	91.755	-0.104	0.053	-0.005
d3	241222.408	349767.972	91.535	241222.450	349768.075	91.875	-0.043	-0.103	-0.340
d4	241222.250	349779.069	91.382	241222.332	349779.055	92.062	-0.082	0.014	-0.680
e1	241247.240	349874.302	113.367	241247.437	349874.229	113.841	-0.197	0.073	-0.474
e2	241247.493	349863.190	112.973	241247.550	349862.900	113.597	-0.057	0.290	-0.624
e3	241298.555	349863.347	113.101	241298.762	349863.250	113.425	-0.207	0.096	-0.324
e4	241298.494	349874.701	113.518	241298.645	349874.573	113.688	-0.151	0.129	-0.170
f1	241242.325	349828.310	107.593	241242.357	349828.282	107.913	-0.032	0.028	-0.320
f2	241242.358	349816.048	107.636	241242.465	349816.305	107.635	-0.107	-0.257	0.001
f3	241297.587	349816.459	107.480	241297.607	349816.642	108.476	-0.020	-0.183	-0.996
f4	241297.520	349827.731	107.558	241297.492	349828.596	108.775	0.028	-0.865	-1.217
g1	241261.287	349791.991	96.664	241261.302	349791.802	96.153	-0.015	0.189	0.511
g2	241261.203	349779.691	95.883	241261.436	349779.787	96.216	-0.233	-0.096	-0.333
g3	241299.235	349779.836	93.574	241299.401	349780.032	94.092	-0.166	-0.197	-0.518
g4	241299.220	349792.045	93.524	241299.329	349791.823	93.847	-0.109	0.221	-0.323
						RMSE	±0.081	±0.247	± 0.359

4. Conclusions

This paper describes the algorithm for extraction of building boundary from LIDAR data with panchromatic aerial imagery. We showed how the aerial image can be fused with LIDAR data in the building boundary extraction process. The experimental results showed that the RMSEs of building corner points in X, Y and Z were ± 8.1 cm, ± 24.7 cm, ± 35.9 cm, respectively.

References

[1] Kim, H. T., 2000. Fusion of Lidar Data and Photogrammetric Imagery for Autonomous Generation of Building Layers in GIS, Dissertation, Seoul national university.

- [2] Aloysius Wehr, Uwe Lohr, 1999. Airborne laser scanning-an introduction and overview, *ISPRS Journal of Photogrammetry & Remote Sensing*, 54, pp. 68-82.
- [3] Friedrich Ackermann, 1999. Airborne laser scanningpresent status and future expectations, *ISPRS Journal of Photogrammetry & Remote Sensing*, 54, pp. 64-67.
- [4] Zheng Wang, Tony Schenk (2000) Building Extraction and Reconstruction from LIDAR Data, *International Archieves of Photogrammetry and Remote Sensing*. Vol XXXIII, Part B3. Amsterdam, pp. 959.