• 제목/요약/키워드: air oxidation

검색결과 951건 처리시간 0.025초

저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해 (Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning)

  • 조완근;권기동;최상준;송동익
    • 한국환경과학회지
    • /
    • 제13권9호
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

이규화몰리브덴 고온발열체의 고온산화거동 (High-Temperature Oxidation of MoSi2 Heating Elements)

  • 서창열;장대가;심건주;조덕호;김원백
    • 한국재료학회지
    • /
    • 제6권1호
    • /
    • pp.57-66
    • /
    • 1996
  • MoSi2 heating elements were fabricated by sintering of MoSi2 powders which were synthesized through SHS(Self-propagating high-temperature synthesis). Their high-temperature oxidation behavior in air through SHS(Self-propagating high-temperature synthesis). Their high-temperature oxidation behavior on air at 1000-1600$^{\circ}C$ was investigated through a high-temperature X-ray diffractomer and isothermal heating in a muffle furnace. The thermal expansion of MoSi2 and SiO2 was studied by measuring their lattice parameters on heating. The linear expansion coeffcient of MoSi2 along c-axis was about 1.5 times larger than that along a-axis showing a strong thermal anisotropy. Few $\mu\textrm{m}$-thick Mo5Si3 layer was found beneath SiO2 layer suggesting that The major reaction products would be SiO2 and Mo5Si3. The Si-rich bentonite resulted in the faster growth of MoSi2 grains probably by enhancing the mass transport when they are melted during high-temperature oxidation.

  • PDF

Oxidation Behavior of U-0.75 wt% Ti Chips in Air at 250-50$0^{\circ}C$

  • Kang, Kweon-Ho;Shin, Hyun-Kyoo;Kim, Chul;Park, Young-Moo
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.193-197
    • /
    • 1996
  • A study was conducted on the oxidation behavior of U-0.75 wt% Ti chips (Depleted Uranium, DU chips) using an XRD and a thermogravimetric analyzer in the temperature range from 250 to 500$^{\circ}C$ in air. At the temperature lower than 400$^{\circ}C$, DU chips were converted to UO$_2$, U$_3$O$\_$7/, and U$_3$O$\_$8/ whereas at the temperature higher than 400$^{\circ}C$, DU chips were completely converted to U$_3$O$\_$8/, the most stable form of uranium oxide. The activation energy for the oxidation of DU chips is found, 44.9 kJ/mol and the oxidation rate in terms of weight gain (%) can be expressed as; dW/dt8.4${\times}$10$^2$e(equation omitted) wt%/min (250$\leq$T($^{\circ}C$) $\leq$ 500) where W=weight gain (%), t=time and T=temperature.

  • PDF

Pack-cementation 방법에 의해서 탄화규소로 도포된 탄소/탄소 복합재의 산화거동 (Oxidation Behavior of SiC Coated Carbon/carbon Composite by Pack-cementation Method)

  • 김정일;박인서;주혁종
    • Composites Research
    • /
    • 제13권2호
    • /
    • pp.22-29
    • /
    • 2000
  • 탄소/탄소 복합재는 고온에서의 우수한 물성에도 불구하고, 산화에 대한 취약한 성질로 인하여 많은 분야에서 사용에 제약을 받고 있다. 그러므로 탄소/탄소 복합재의 산화안정성을 향상시키기 위해서 수많은 연구가 수행되어지고 있다. 본 연구에서는 고온에서 보다 개선된 물성과 높은 산화안정성을 부여하고, 타 도포물질과 비교해서 낮은 열팽창계수의 차이를 보이는 탄화규소를 Pack-Cementation 방법으로 4방향성 탄소/탄소 복합재에 도포하였다. 제작된 탄화규소로 도포된 탄소/탄소 복합재는 광학현미경의 관찰을 통하여 도포기구를 추정하였으며, 산화시험을 통하여 개선된 산화안정성을 조사하였다. 그리고 여러 시험을 종합 ·분석하여 도포공정의 최적의 반응조건을 연구하였다.

  • PDF

광촉매/광산화를 이용한 VOCs 처리장치 개발 (Development for UV/TiO2 Photocatalytic Oxidation Indoor Air Compound Process)

  • 전보경;최금찬;서정민
    • 한국환경과학회지
    • /
    • 제15권9호
    • /
    • pp.855-864
    • /
    • 2006
  • This study introduces a method to eliminate formaldehyde and benzene, toluene from indoor air by means of a photocatalytic oxidation reaction. In the method introduced, for the good performance of the reaction, the effect and interactions of the $TiO_2$ catalyst and ultraviolet in photocatalytic degradation on the reaction area, dosages of catalysts, humidity and light should be precisely examined and controled. Experiments has been carried out under various intensities of UV light and initial concentrations of formaldehyde, benzene and toluene to investigate the removal efficiency of the pollutants. Reactors in the experiments consist of an annular type Pyrex glass flow reactor and an 11W germicidal lamp. Results of the experiments showed reduction of formaldehyde, benzene and toluene in ultraviolet $/TiO_2/$ activated carbon processes (photooxidation-photocatalytic oxidation-adsorption processes), from 98% to 90%, from 98% to 93% and from 99% to 97% respectively. Form the results we can get a conclusion that a ultraviolet/Tio2/activated carbon system used in the method introduced is a powerful one for th treatment of formaldehyde, benzene and toluene of indoor spaces.

열간 압축법으로 제조된 Cr2AlC 화합물의 900-1200℃, 50시간 동안의 대기중 산화 (Oxidation of Hot Pressed Cr2AlC Compounds at 900-1200℃ for Up to 50 Hours in Air)

  • 이동복
    • 한국표면공학회지
    • /
    • 제44권4호
    • /
    • pp.125-130
    • /
    • 2011
  • $Cr_2AlC$ compounds were synthesized by hot pressing, and oxidized between 900 and $1200^{\circ}C$ in air for up to 50 hours. They oxidized to a thin $Al_2O_3$ layer containing a small amount of $Cr_2O_3$with the liberation of carbon as CO or $CO_2$ gases. The consumption of Al to form the $Al_2O_3$ layer led to the depletion of Al and enrichment of Cr just below the $Al_2O_3$ layer, resulting in the formation of an underlying $Cr_7C_3$ layer. As the oxidation temperature and time increased, the $Cr_7C_3$ oxide layer and the underlying $Cr_7C_3$ layer thickened. The oxidation resistance of $Cr_2AlC$ was generally good due to the formation of the $Al_2O_3$ barrier layer.

CrAlSiN 박막의 대기중 고온산화 (High temperature air-oxidation of CrAlSiN thin films)

  • 황연상;원성빈;;김선규;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.53-54
    • /
    • 2013
  • Nano-multilayered CrAlSiN films consisting of crystalline CrN nanolayers and amorphous AlSiN nanolayers were deposited by cathodic arc plasma deposition. Their oxidation characteristics were studied between 600 and $1000^{\circ}C$ for up to 70 h in air. During their oxidation, the amorphous AlSiN nanolayers crystallized. The formed oxides consisted primarily of $Cr_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$. The outer $Al_2O_3$ layer formed by outward diffusion of Al ions. Simultaneously, an inner ($Al_2O_3$, $Cr_2O_3$)-mixed layer formed by the inward diffusion of oxygen ions. $SiO_2$ was present mainly in the lower part of the oxide layer due to its immobility. The CrAlSiN films displayed good oxidation resistance, owing to the formation of oxide crystallites of $Cr_2O_3$, ${\alpha}-Al_2O_3$, and amorphous $SiO_2$.

  • PDF

초임계수에서 Cephradine 산화반응속도 (Fundamental Kinetics of Cephradine Oxidation in Supercritical Water)

  • 김영권;김인배
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.133-139
    • /
    • 2004
  • The objective of this study was to investigate the destruction efficiency and to determine the fundamental parameters of oxidation kinetics under the supercritical water(SCW) condition. Target material was cephradine, toxic and antibiotic material, in the pharmaceutical wastewater. For this purpose, the effect of reaction temperature and oxidant were investigated on the destruction efficiency of cephradine. And the oxidation kinetics of cephradine was derived by using a empirical power-law model. The experiment was carried out in a cylindrical batch reactor made of Hastelloy C-276 which was endurable high temperature and pressure. The destruction efficiency of cephradine increased with increment of the temperature and reaction time. Also the type of oxidants was effected and oxidants(Air and $H_2O$$_2$) were enhanced the destruction efficiency. The global oxidation kinetics for cephradine has led to two rate expressions according to type of oxidant. - In the presence of air oxidant: Rate=k. $e^{-Ea}$RT/(Ceph.)$^{1.0}$ ( $O_2$)$^{0.51}$$\pm$0.05(k=3.27${\times}$$10^{5}$ sec. Ea=63.25 kJ/mole) - In the presence of $H_2O$$_2$ oxidant : Rate=kㆍ $e^{-Ea}$RT/(Ceph.)$^{1.0}$ ($H_2O$$_2$)$^{0.62}$$\pm$0.02(k=2.76${\times}$$10^4$/sec. Ea=47.65 kJ/mole)ole))

CaO 첨가와 열간압연이 마그네슘 합금의 고온산화에 미치는 영향 (Effect of CaO and Hot Rolling on the High Temperature Oxidation of Magnesium Alloys)

  • ;;원성빈;이동복
    • 한국표면공학회지
    • /
    • 제45권4호
    • /
    • pp.155-161
    • /
    • 2012
  • Magnesium alloys of AZ31, AZ31 + (0.5, 1, 1.5)wt.% CaO were cast, hot rolled, and oxidized between 450 and $650^{\circ}C$ in atmospheric air. The added CaO enabled to cast the AZ31 alloy in air. It decomposed and precipitated along the grain boundaries of the AZ31 alloy as $Al_2Ca$. The more the amount of CaO was, the more $Al_2Ca$ formed. The oxidation limit was about $450^{\circ}C$ for the AZ31 alloy. But, It increased to $650^{\circ}C$ in the CaO-added alloys. Hot rolling destroyed the precipitates that formed along the grain boundaries of the AZ31 alloy. During oxidation, MgO oxide scales that incorporated CaO formed at the outer surface of the formed oxide layer.

저탄소강의 대기중 1050~1180℃의 산화에 미치는 합금원소 Si, S, Cu, Sn, Ni의 영향 (Effect of Alloying Elements Si, S, Cu, Sn, and Ni on Oxidation of Low Carbon Steels between 1050 and 1180℃ in Air)

  • 박상환;이동복;백선필
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.749-756
    • /
    • 2010
  • Low carbon steels were oxidized isothermally at 1050 and $1180^{\circ}C$ for 4 hr in air in order to determine the effect of alloying elements Si, S, Cu, Sn, and Ni on oxidation. For oxidation resistance of low carbon steels, the beneficial elements were Si, Cu, and Ni, whereas the harmful elements were S and Sn. The most active alloying element, Si, was scattered inside the oxide scale, at the scale-alloy interface, and as an internal oxide precipitate. The relatively noble elements such as Cu and Ni tended to weakly segregate at the scale-alloy interface. Sulfur and Sn were weakly, uniformly distributed inside the oxide scale. Excessively thick, non-adherent scales containing interconnected pores formed at $1180^{\circ}C$.