DOI QR코드

DOI QR Code

Effect of CaO and Hot Rolling on the High Temperature Oxidation of Magnesium Alloys

CaO 첨가와 열간압연이 마그네슘 합금의 고온산화에 미치는 영향

  • Xu, Chunyu (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Trung, Trinh Van (School of Materials Science and Engineering, University of Ulsan) ;
  • Won, Sung-Bin (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Dong-Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • ;
  • ;
  • 원성빈 (성균관대학교 신소재공학과) ;
  • 이동복 (성균관대학교 신소재공학과)
  • Received : 2012.08.06
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

Magnesium alloys of AZ31, AZ31 + (0.5, 1, 1.5)wt.% CaO were cast, hot rolled, and oxidized between 450 and $650^{\circ}C$ in atmospheric air. The added CaO enabled to cast the AZ31 alloy in air. It decomposed and precipitated along the grain boundaries of the AZ31 alloy as $Al_2Ca$. The more the amount of CaO was, the more $Al_2Ca$ formed. The oxidation limit was about $450^{\circ}C$ for the AZ31 alloy. But, It increased to $650^{\circ}C$ in the CaO-added alloys. Hot rolling destroyed the precipitates that formed along the grain boundaries of the AZ31 alloy. During oxidation, MgO oxide scales that incorporated CaO formed at the outer surface of the formed oxide layer.

Keywords

References

  1. K. U. Kainer and F. von Buch, Magnesium-Alloys and Technology, K. U. Kainer (Ed.), Wiley-VCH, Germany (2003) 1.
  2. W. Ha, J. E. Lee, Y. J. Kim, Mater. Sci. Forum, 475-479 (2005) 2543. https://doi.org/10.4028/www.scientific.net/MSF.475-479.2543
  3. F. C. Erickson, J. F. King, T. Mellerud, Foundry Management & Technology, 126 (1998) 38.
  4. J. R. Liu, H. K. Chen, L. Zhao, W. D. Huang, Corros. Sci., 51 (2009) 129. https://doi.org/10.1016/j.corsci.2008.10.011
  5. M. Sakamoto, S. Akiyama, J. Mater. Sci. Lett., 16 (1997) 1048. https://doi.org/10.1023/A:1018526708423
  6. H. K. Kim, B. H. Seong, G. H. Van, D. H. Kim, Y. R. Seong, S. G. Lim, J. Kor. Foundrymen's Soc., 32 (2012) 75. https://doi.org/10.7777/jkfs.2012.32.2.075
  7. B. H. Choi, B. S. You, W. W. Park, I. M. Park, J. Kor. Inst. Met. & Mater., 42 (2004) 673.
  8. B. S. You, M. H. kim, W. W. Park, I. S. Chung, J. Kor. Inst. Met. & Mater., 39 (2001) 446.
  9. S. L. Cheng, G. C. Yang, J. F. Fan, Y. J. Li, Y. H. Zhou, Trans. Nonferr. Met. Soc. China, 19 (2009) 299. https://doi.org/10.1016/S1003-6326(08)60268-X
  10. T. S. Shih, J. H. Wang, K. Z. Chong, Mater. Chem. Phys., 85 (2004) 302. https://doi.org/10.1016/j.matchemphys.2004.01.036
  11. S. K. Kim, Magnesium Alloy and Manufacturing Method Thereof, Kor. Patent 10-1147671 (2011).
  12. S. H. Ha, J. K. Lee, H. H. Jo, S. B. Jung, S. K. Kim, Rare Metals, 25 (2006) 150.
  13. S. K. Kim, J. K. Lee, Y. O. Yoon, H. H. Jo, J. Mater. Process. Tech., 187-188 (2007) 757. https://doi.org/10.1016/j.jmatprotec.2006.11.172
  14. D. I. Jang, J. K. Lee, D. U. Kim, S. K. Kim, Trans. Nonferr. Met. Soc. China, 19 (2009) s76. https://doi.org/10.1016/S1003-6326(10)60248-8
  15. J. K. Lee, S. K. Kim, Trans. Nonferr. Met. Soc. China, 21 (2011) s23. https://doi.org/10.1016/S1003-6326(11)61054-6
  16. M. Yang, F. Pan, R. Cheng, A. Tang, Mater. Sci. Eng. A, 491 (2008) 440. https://doi.org/10.1016/j.msea.2008.02.017
  17. C. Xu, B. Lu, Z. Lu, W. Liang, J. Rare Earth., 26 (2008) 604. https://doi.org/10.1016/S1002-0721(08)60146-5
  18. J. H. Kim, N. E. Kang, C. D. Yim, B. K. Kim, Mater. Sci. Eng. A, 525 (2009) 18. https://doi.org/10.1016/j.msea.2009.07.048
  19. F. Czerwinski, Acta Mater., 50 (2002) 2639. https://doi.org/10.1016/S1359-6454(02)00094-0
  20. R. Ninomiya, T. Ojiro, K. Kubota, Acta Metall. Mater., 43 (1995) 669. https://doi.org/10.1016/0956-7151(94)00269-N
  21. B. S. You, W. W. Park, I. S. Chung, Scripta Mater., 42 (2000) 1089. https://doi.org/10.1016/S1359-6462(00)00344-4
  22. Y. Yin, B. B. Argent, J. Phase Equilib., 14 (1993) 588. https://doi.org/10.1007/BF02669140