• Title/Summary/Keyword: air monitoring

Search Result 1,519, Processing Time 0.029 seconds

Current Status and Prospective of Hazardous VOC in Ambient Air (환경대기 중 유해성 VOC 측정에 관한 동향과 전망)

  • Seo, Young-Kyo;Chung, Sun-Ho;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.734-745
    • /
    • 2011
  • In this article, we reviewed the monitoring status of hazardous VOC in ambinet air in Korea and some developed countries such as USA, Japan, and UK. In many countries, two types of VOC monitoring stations are being operated, i.e., for hazardous VOC and photochemical VOC. Each country has different target VOC but all includes benzene. Korea, Japan, and UK have a national ambient air quality standard for benzene, but no national standard has been established in the USA. For sampling of the hazardous VOC, the adsorbent method is adopted in Korea and UK, while the canister method is used in the USA. Both of adsorbent and canister methods are used in Japan. USA and UK have only non-automatic method to measure the hazardous VOC, and the individual samples are being sent to their national laboratories for integrated analysis. On the other hand, Korea and Japan have automatic and nonautomatic methods to measure the hazardous VOC. Local governments or regional environmental agencies in Korea and Japan have the authorization for the sampling and analysis of VOC. According to a field study to evaluate the performance of automatic VOC monitoring system, controlling the moisture in the air sample was identified as the most important problem. However, careful attention must be given to using a moisture removing device such as Nafyon dryer, because of unexpected artifacts formation. In order to have reliable data, it is highly recommended not only to use internal standards, but to use appropriate hydrophobic adsorbents as a cold trap in any automatic on-line VOC monitoring system.

Remote Monitoring System for Environment Measurement in Industrial Field (산업현장의 환경계측을 위한 원격 모니터링 시스템)

  • Lee, Hwa-Yeong;Park, Yong-Jun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.25-27
    • /
    • 2022
  • Recently, with the development of the 4th industry, environmental issues such as air pollution have become serious, and in particular, a lot of air pollutants are generated in industrial sites. There are various types of air pollutants, and among them, carbon monoxide is essential for fires occurring in industrial sites, so it should be possible to monitor in real time. In addition, there is a need for a remote monitoring system that can measure various environmental factors other than air pollutants in real time. In this paper, we propose a monitoring system using wireless communication to remotely measure the industrial environment. The proposed monitoring system collects data to the Arduino of the transmitter by using a carbon monoxide sensor, a combustible gas sensor, a temperature and humidity sensor, and a flame sensor, and then transmits it to the receiver using ZigBee. The transmitted data is stored in the database of the receiver Raspberry Pi, and the stored data can be monitored in real time through the monitoring system.

  • PDF

On-road Air Pollution Characteristics around a Day-care Center in Urban Area (도심 어린이집 주변 도로상 대기오염도 특징)

  • Woo, Sung Ho;Lee, Seung-Bok;Kim, Kyung Hwan;Lee, Gwangjae;Ryu, Sung Hee;Kim, Jong Bum;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.61-75
    • /
    • 2014
  • Five on-road measurements were made using a mobile laboratory (ML) to characterize spatial and temporal air pollutant distributions over roads around a day-care center in urban area on 30 August 2013. Fixed monitoring was also done near the day-care center using the ML during the periods between on-road measurements. On-road air pollution monitoring route was classified into seven sections and three zones to identify severe polluted roads among many roads having different traffic volumes and directions. Typical pollutants emitted from vehicles such as $NO_x$, black carbon, particle-bound polycyclic aromatic hydrocarbons, and submicron particles including nanoparticles were monitored using real-time instruments. Peak concentration episodes were frequently observed during the on-road measurements and most peaks were simultaneously monitored at four pollutants. Colored on-road air pollution map for each pollutant provides an insight on spatial air pollution distribution, showing heavily polluted roads and sections. Average on-road $NO_x$ concentration of each run was similar to that monitored at the nearest roadside air monitoring station.

Temporal distribution, influencing factors and pollution sources of urban ambient air quality in Nanchong, China

  • Zhou, Hong;Li, Youping;Liu, Huifang;Fan, Zhongyu;Xia, Jie;Chen, Shanli;Zheng, Yuxiang;Chen, Xiaocui
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.260-267
    • /
    • 2015
  • The $PM_{10}$, $SO_2$ and $NO_2$ mass concentrations were obtained over five years from monitoring stations across Nanchong, a southwest city in China. Changes in urban air quality over time, as well as the factors influencing that change, were evaluated based on air pollutant concentrations, the Air Pollution Index (API), and the Comprehensive Pollution Index (P). The results showed that the total annual mean $PM_{10}$, $SO_2$ and $NO_2$ concentrations over the five years studied were $61.1{\pm}1.1$, $45.0{\pm}3.9$ and $34.9{\pm}4.9{\mu}g{\cdot}m^{-3}$, respectively. The annual mean concentrations displayed a generally decreasing trend; lower than the annual mean second-level air quality limit. Meanwhile, the annual mean API values were in a small range of 52-53, the air quality levels were grade II, and P values were 1.06-1.21 less than the slight level ($P{\leq}1.31$). Total monthly mean $PM_{10}$, $SO_2$, $NO_2$ concentrations, and API and P values were consistently higher in winter and spring than during autumn and summer. The results of a correlation analysis showed that temperature and pressure were the major meteorological factors influencing pollution levels. Pollution sources included industrial coal and straw burning, automobiles exhaust and road dust, fireworks, and dust storms.

Air Pollution Monitoring RF-Sensor System Trackable in Real Time (실시간 위치탐지 기능을 갖춘 대기오염 모니터링 RF-Sensor 시스템)

  • Kim, Jin-Young;Cho, Jang-Ho;Jeon, Il-Tae;Jung, Dal-Do;Kang, Joon-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Air pollution monitoring has attracted a lot of interests because it affects directly to the human life quality. The most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the specific area. Therefore, it is difficult to install them to as many places as people need. In this work, we constructed a low price and small size Radio Frequency(RF) sensor system to solve this problem. This system also had the measurement range similar to the ones used in the air pollution forecast systems. This system had the sensor unit to measure the air quality, the central processing unit for air quality data acquisition, the power unit to supply the power to every units, and the RF unit for the wireless transmission and reception of the data. This system was easy to install in the field. We also added a GPS unit to track the position of the RF-sensor in real time by wireless communication. For the various measurements of the air pollution, we used CO, $O_3$, $NO_2$ sensors as gas sensors and also installed a dust sensor.

Development of Real-time TMS Video Monitoring System (TMS용 실시간 영상 모니터링 시스템의 개발)

  • Kwak, Doo-Sung;Kim, On;Cho, Ki-Ryang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1072-1076
    • /
    • 2009
  • This paper proposes a real time TMS real-time video monitoring system that emphasizes environmental accident precautions. In order to make up for the problems of the existing system, the digital numeric values of air pollution materials and video signals are displayed on the screen in this system. And through this process, air pollution can be monitored in real time. In tile system proposed in this paper, other relevant parts, as well as the managers and field operators of environmental parts, can also monitor the real time changes of air pollution.

Development of Aircargo Monitoring System using RFID Technology (RFID 기술 기반 항공화물 모니터링 시스템 개발)

  • Son, Min-Gyu;Chang, Yoon-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.474-484
    • /
    • 2010
  • In this paper, we introduce a RFIDbased real time air cargo monitoring system for cargo management in the air cargo terminal. In order to construct functional requirement and development framework,. we have analyzed the user requirements of cargo personnel of Incheon International Air Cargo Terminal. To find out the possibilities to adopt RFID in the cargo, we had benchmarked different RFID systems and also tested radio environment of the cargo. Based on the RFID system test and radior environment test, we developed a web based cargo monitoring solution which adopts EPC network and BPM solution with flexibility and expandability.

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.335-347
    • /
    • 2016
  • One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

Development of an Air Pollution Monitoring Network Design Method Based on Regional Representativeness and Pollution Damage Impact (地域代表性과 汚染被害를 考慮한 大氣汚染 測定網 配置技法의 開發에 關한 硏究)

  • 김태형;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.47-54
    • /
    • 1987
  • A new method for designing air pollution monitoring newtork is presented in this study. In this method, the magnitudes and the correlation coefficients of predicted concentrations in each grid points are examined and the monitoring stations are assigned to those stations which cover the damage cost the most. This method was applied to the Ulsan-Onsan Industrial Complex. This method turned out to be much more efficient than the method of TM coordinates and the method of concentric circles prescribed in the Standard Methods for Pollution Measurement as well as the existing monitoring system established in the area. The 21 stations selected by the method of TM coordinates could cover only 64.4% of the damage cost in the area, the 16 stations by the method of concentric circles 72.1%, and the existing 21 stations 67.8%, while 11 stations were enough to cover 90% of the damage cost in the area with this method. It also was found that this method required only 24 stations to cover the entire area.

  • PDF

Investigation of acoustic monitoring on laser shock cleaning process (레이저 충격파 클리닝 공정에서 음향 모니터링에 관한 연구)

  • 김태훈;이종명;조성호;김도훈
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • A laser shock cleaning technology is a new dry cleaning methodology for the effective removal of small particles from the surface. This technique uses a plasma shock wave produced by a breakdown of air due to an intense laser pulse. In order to optimize the laser shock cleaning process, it needs to evaluate the cleaning performance quantitatively by using a monitoring technique. In this paper, an acoustic monitoring technique was attempted to investigate the laser shock cleaning process with an aim to optimize the cleaning process. A wide-band microphone with high sensitivity was utilized to detect acoustic signals during the cleaning process. It was found that the intensity of the shock wave was strongly dependent on the power density of laser beam and the gas species at the laser beam focus. As a power density was larger, the shock wave became stronger. It was also seen that the shock wave became stronger in the case of Ar gas compared with air and N$_2$ gas.

  • PDF