• Title/Summary/Keyword: air flow resistance

Search Result 308, Processing Time 0.03 seconds

제너 다이오드를 이용한 공기 유속계측 장치개발

  • 김영재;김희식;조흥근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.496-500
    • /
    • 1996
  • An air flow measurement device is proposed. The thermal characteristic of a semiconductor element is adopted as a cooling parameter of thermal convection rate. The difference between forced convection and natural convection of two Zener diodes results enough difference in temperature. Experiment at various air flow conditions shows the measuring capability of the air flow in a duct. This measuring device has some merits, such as a reliability n hard field condition, simple circuit for signal processing, small volume of the element, less air flow resistance, independance of various ai temperature. The experimental result shows that it is an exact and usefull air flow measurement device.

  • PDF

자동차 주위에 흐르는 공기의 유동 저항에 미치는 차체의 형상 연구 (Study of the Shape of Car Body Affecting Flow Resistance of Air Flowing Near Car)

  • 이현창;조재웅
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.4707-4712
    • /
    • 2014
  • 공기 저항으로 인하여 자동차가 연료를 많이 소모하는 경우가 있다. 본 연구에서는 승용차 차체 주위에서의 유동해석을 이용하여 공기 흐름에 대한 그 유동 저항을 분석한다. 그리고 실제 시장에서 팔리는 차로서 그 연구 모델들을 사용하였다. CFX인 유동해석을 이용하여 유동 입구평면에 들어가는 공기의 유속은 80km/h와 110km/h인 2가지 경우로서 본 연구방법으로서 자동차가 진행시 자동차 주위의 공기 유속과 차체 뒷면의 압력을 조사하였다. 연구모델의 형상은 Model 1 및 2인 두 가지로 하였다. 그리고 Case 1, 2, 3, 4인 4가지의 유동 흐름의 경우 중에서 Case 1의 경우가 차체 뒷면의 최대압력이 $1.017{\times}10^5Pa$로 가장 큰 압력을 나타내었다. 또한 Case 1의 경우에 차체주위에 흐르는 공기의 최대 속도가 43.81m/s로서 가장 큰 압력을 나타내었다. 승용차의 고속 주행 시(110km/h)가 정속 주행(80km/h)보다 큰 공기의 항력이 나타나는 것을 알 수 있고 차체의 단면적이 넓은 차가 단면적이 작은 차보다 항력이 더 크게 나타난 것을 알 수 있다. 본 해석 결과를 이용하여 공기 저항을 줄일 수 있는 자동차 차체의 형상 설계를 효율적으로 할 수 있다고 사료된다.

전산모사에 의한 웨이브 히트싱크의 열유동 특성 해석 (Heat Flow Analysis in the Newly Developed Wave Heat Sink by Computational Simulation)

  • 이인규;이상웅;강계명;장시영
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.870-875
    • /
    • 2004
  • Heat flow characteristics in the newly developed Wave Heat Sink were analyzed under natural and forced convections by Icepak program using the finite volume method. Temperature distribution and thermal resistance of Wave Heat Sink with/without air vent hole on the top of fin were compared with those of a commercial Al extruded heat sink(Intel Heat Sink). Under the natural convection, the maximum temperature was $45.1^{\circ}C$ in the air vent hole typed Wave Heat Sink, which was superior to that of Intel Heat Sink. The thermal resistance was $2.51^{\circ}C/W$ in the air vent hole typed Wave Heat Sink, and it changed to $2.65^{\circ}C/W\;and\;2.16^{\circ}C/W$ with changes of gravity direction and fin height, respectively. Under the forced convection, the maximum temperature became lower than that under the natural convection. In addition, the thermal resistance lowered in the air vent hole typed Wave Heat Sink with higher fin height and it decreased with increasing the air flux.

Resistance Reduction of a High Speed Small Boat by Air Lubrication

  • Jang Jin-Ho;Kim Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2006
  • The resistance reduction by an air lubrication effect of a large air cavity covering the hull bottom surface and the similarity relations involved have been investigated with a series of towing tank tests of three geometrically similar models. The test results of geometrically similar models have indicated that a large air cavity was formed beneath the bottom having a backward-facing step by artificially supplying air is effective for resistance reduction. The areas of air cavity and the required flow rates of air are directly related to the effective wetted surface area. The traditional extrapolation methods seem to be applicable to the estimation of the resistance in the tested range if corrections are made to account the changes in the frictional resistance caused by the changes in the effective wetted surface area. To investigate the effectiveness of air lubrication in improving the resistance performance of a practical ship, a small test boat having a backward-facing step under its bottom has been manufactured and speed trials in a river have been performed. Air has been supplied artificially into the downstream region of the bottom step to form a large air cavity covering the bottom surface. The results have confirmed the practical applicability of air lubrication for the resistance reduction of a small high-speed boat.

저온 수직평판에서 착상에 대한 운전조건의 영향 (The Effect of Operating Conditions on the Frost Formation in a Vertical Plate at a Low Temperature)

  • 이관수;이태희;김우승
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3305-3314
    • /
    • 1994
  • In this study, the influence of a frost formed on the vertical plate for different operating conditions(the temperature of the air, the humidity of the air, the velocity of the air, and the temperature of the cooling plate) is investigated. The performance of the heat exchanger is examined by introducing a parameter such as the energy transfer resistance. Correlations which relate frost density, frost thickness and energy transfer resistance to Reynolds number, air temperature and humidity, and cooling plate temperature are developed. Static pressure drop and air flow rate are expressed as a function of free flow area of air.

상용 대형 트럭의 디플렉터 형상에 따른 공기저항력 (Air Resistance Due to the Deflector Configuration of Commonly Used Largetrucks)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.138-144
    • /
    • 2014
  • This study investigates the air resistance due to deflector configurations of commonly used largetrucksat a driving speedof 80 km/h. Of the 6 models that are considered, the drag causedby the pressure on the front part of the trailer is largest for model 1. For model 1, the lift caused by the difference between the velocities of the upper and lower streams isgreatest amongall the models. Model 6 has the least resistance against the flow stream consideringthedrags and lifts of theflow models. Anoptimal design can be obtainedby investigating thesimulation analysis ofvarious deflector configurationsfor the upper part of largetrucks; this optimum deflector configuration will help reduce the air resistanceon large trucks.

착상조건하에서 평행 평판 열교환기의 열 및 물질전달 (Heat and Mass Transfer of Parallel Plate Heat Exchanger under Frosting Condition)

  • 이관수;이태희;김우승
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.155-165
    • /
    • 1994
  • In this study, the following factors are investigated from experiments for a vertical parallel plate heat exchanger under the frosting condition ; the growth of frost layer, the characteristics of heat and mass transfer, the change of mass flow rate of the air passing through the heat exchanger, and the pressure drop of the air in the heat exchanger. The amount of heat and mass flux of water vapor transferred from the air stream to the heat exchanger surface is large at the early stage of frosting and then decreases dramatically, and the extent of decreasing rate becomes moderate with time. The frost layer formed near the inlet of the heat exchanger is thicker and denser than that formed near the outlet. It is found that the gradient of the amount of frost along the flow direction increases with time. In the early period of frost formation, the thermal resistance between the air and the cooling plate increases dramatically and then the extent of change decreases with time. Initially the convective thermal resistance is dominant. Then, while the convective thermal resistance decreases with time, the conductive thermal resistance continues to increase with time and finally the conductive thermal resistance becomes dominant.

  • PDF

냉장고 내부의 냉기 유동특성에 관한 3차원 해석(I) (3-Dimensional Calculation on Cold Air Flow Characteristics in a Refrigerator)

  • 오민정;이재헌;오명도
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.382-395
    • /
    • 1995
  • A numerical study has been performed on flow characteristics in a domestic refrigerator whose size is $540mm{\times}1,530mm{\times}680mm$, considering existence of a fan and evaporator. The flow field has been simulated with the low Reynolds number $k-\bar{\varepsilon}$ turbulent model and SIMPLE algorithm based on the finite volume method. The region of fan which makes driving force for cold air distribution was modeled as a region in which momentum sources are generated uniformly. The concept of the distributed pressure resistance was applied to describe the momentum loss from evaporator. The result showed that the rate of cold air distribution into freezing room and cold storage room was almost 7 : 3.

  • PDF

휴대용 컴퓨터 내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포 (Fluid Flow and Temperature Distribution Around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers)

  • 박상희;신대종
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2004
  • This paper reports an experimental study around a module about forced air flow by blower (35${\times}$35${\times}$6㎣) in a portable personal computer model(200${\times}$235${\times}$10㎣). Experimental report is to know three data to investigate thermal resistance, adiabatic wall temperature and visualized fluid flow around the module by combination of the moving number and the arrangement method of blower. The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78㎧, and input power ( $Q_{p}$) to the module is 4W. To investigate thermal resistance. the heated module is mounted on two boards(110${\times}$110${\times}$1.2㎣, k=20.73, 0.494W/ $m^{\circ}C$) in parallel-plate channel to forced air flow. The temperature distribution were visualized by heated module on acrylic board(k=0.262W/ $m^{\circ}C$) using liquid crystal film. Fluid flow around the module were visualized using particle image velocimetry system.

가솔린 직분사 엔진에서 운전 조건에 따른 공기 유동 특성에 의한 분무 거동 및 점화 채널에 관한 연구 (Study on Behavior of Spray and Spark Channel by Air Flow Characteristics According to Operating Conditions in Gasoline Direct Injection Engine)

  • 이호승;박성욱
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.198-206
    • /
    • 2023
  • In this study, visualization of in-cylinder spray behavior and spark channel stretching by air flow characteristics depending on engine operating conditions were investigated. For in-cylinder spray behavior, increase in engine rpm did not alter the counter-clockwise air flow direction and location of in-cylinder dominant air flow but increased average air flow velocity, which hindered spray propagation parallel to the piston surface. When injection timing was retarded, direction of in-cylinder dominant air flow was changed, and average air flow velocity was reduced resulting in an increase in spray penetration length and change in direction. For spark channel stretching, increase in air flow speed did not affect spark channel stretch direction but affected length due to increase in spark channel resistance and limitation of energy ignition coil can handle. Change in air flow direction affected spark channel stretch direction where the air flow was obstructed by ground electrode which caused spark channel direction to occur in the opposing direction of air flow. It also affected spark channel stretch length due to change in air flow speed around the spark plug electrode from the interaction between the air flow and ground electrode.