• 제목/요약/키워드: air conditions

검색결과 5,566건 처리시간 0.028초

분리형 인버터 에어컨의 운전조건에 따른 성능 연구 (A study on the performance of a split system inverter air-conditioner at different operation conditions)

  • 김만회
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.113-121
    • /
    • 1998
  • The performance evaluation of a residential split system inverter air-conditioner has been conducted analytically and experimentally at different system operating conditions. A simulation program for modelling an air-conditioning system which consists of a compressor, a condenser, a capillary tube, an evaporator and related attachments was developed on the basis of the Oak Ridge heat pump design model, MARK III. The accuracy of the simulation results for the compressor frequencies of 32, 68 and 79 Hz for the residential split system inverter air-conditioner has been estimated by comparing calculation results to the experimental data and parametric study has been performed to investigate the effect of design parameters and operation conditions on the system performance.

쉬라우드 공기의 선회 유동 특성 변화에 따른 심플렉스 연료 노즐의 분무 특성 (The Spray Characteristics of Simplex Atomizer under Various Shroud Air Conditions with Swirl Flow)

  • 이동훈;이강엽;최성만
    • 한국분무공학회지
    • /
    • 제9권3호
    • /
    • pp.35-41
    • /
    • 2004
  • The spray characteristics were investigated to study the effect of shroud air with swirl flow on simplex type fuel injector for gas turbine combustor. The spray tests using PDA(Phase Doppler Anemometry) technique were conducted to compare the performance of simplex atomizer with $0^{\circ},\;40^{\circ},\;50^{\circ}$ swirled-shroud air conditions. In this study. we found that the injector with strong swirled-shroud air has the better atomization Performance compared with weaker swirled and non-swirled conditions.

  • PDF

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제19권E2호
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

군관제사의 직무 수행과 항공교통상황 변인의 영향 연구 (A Study on the Air Traffic Situation Variables which Influence the Job Performance of Military Air Traffic Controllers)

  • 신현삼;장정하;안재모
    • 한국항공운항학회지
    • /
    • 제20권1호
    • /
    • pp.19-25
    • /
    • 2012
  • The air traffic situation variables were emphasized in this research to review the awareness level of job performance of military air traffic controllers in application of air traffic situation variables such as detection of aircraft identification, type of aircraft, position ,speed, altitude, determination of separation between departing and arriving in-trail aircraft, physical airport conditions, adverse weather conditions, NAVAID outage and ATC facilities' operational status. In this respect, This study was conducted under the auspice of ATC facility operating agencies and devoting air force air traffic controller's participation by answering the questionnaires from nine radar approach control facilities and other air traffic control towers.

에어컨의 냉방기간 에너지 효율 산출을 위한 실험적 연구 (Experimental Study on the Cooling seasonal Performance Factor of Room Air-conditioner)

  • 이홍원;문정호;배영돈;박종철
    • 설비공학논문집
    • /
    • 제4권3호
    • /
    • pp.204-216
    • /
    • 1992
  • In most cases, EER(Energy Efficiency Ratio) is available to present energy efficiency of air-conditioners. But, EER is not adapt to measure energy efficiency at actual life environment because it is based on fixed temperature and humidity contditions. To overcome this disadvantage, there is need to introduce SEER(Seasonal Energy Efficiency Ratio) established at time varient temperature and humidity conditions. In this paper, SEER measurement method and conditions based on actual life environment of the country is introduced, and discussed SEER value about two air-conditioner type, that is, non inverter air-conditioner and inverter air-conditioner. As a result of, inverter air-conditioner was superior to non inverter air-conditioner at cooling seasonal energy efficiency.

  • PDF

Study on the Equilibrium Point of Heat and Mass Transfer between Liquid Desiccant and Humid Air with in the Solar Air Conditioning System

  • Sukmaji, I.C.;Rahmanto, H.;Agung, B.;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.161-167
    • /
    • 2009
  • The liquid solar air conditioning system is introduced as an alternative solution to control air condition and to save electrical energy consumption. The heat and mass transfer performances of dehumidifier/regenerator in liquid solar air conditioning system are influenced by air and desiccant condition. The application of this system, the thermal energy from the sun and inlet air are unable to control, but operation parameter of other components such as pump, fan and sensible cooling unit are able to control. The equilibrium point of heat and mass transfer are the liquid desiccant and inlet air conditions, where, the heat and mass are not transferred between the liquid desiccant and vapor air. By knowing equilibrium point of heat and mass transfer, the suitable optimal desiccant conditions for certain air condition are funded. This present experiment study is investigated the equilibrium point heat and mass transfer in various air and desiccant temperature. The benefit of equilibrium point heat and mass transfer will be helpful in choose and design proper component to optimize electrical energy consumption.

  • PDF

철도차량용 공기압축기의 열교환기 최적 설계를 위한 해석 연구 (Numerical Analysis for Optimal Design of Heat Exchanger in Air Compressor for Railroad Vehicle)

  • 김무선;정종덕;장성일;안준
    • 설비공학논문집
    • /
    • 제29권11호
    • /
    • pp.570-579
    • /
    • 2017
  • In this study, we examined the multi-stage piston-type air compressors typically used in a railroad vehicle, and the heat transfer efficiency was analyzed according to the design conditions of the heat exchanger (a compressor component module for cooling the compressed high temperature air). For the fin-tube heat exchanger used in the most air compressors, numerical analysis was performed to analyze heat transfer by defining the various rectangle tube sizes and the number of fin-per-unit area as design variables under the same flow rate of compressed air. Also, this analysis compared the temperature of the compressed air. Regarding environmental conditions for analysis, the flow rate of the external cooling air was measured and the mean value of the values was applied. And a "turbulence model" was considered in both the external flow of the cooling air and the internal flow inside the tube. From the results of analysis, it was found that the change of the aspect ratio value of the tube greatly influences the heat transfer efficiency of the compressed air, and influences if the fin density is relatively small. As a result, the optimum design specifications of the heat exchanger for air compressors were confirmed based on the analysis of the heat transfer efficiency, according to the design conditions of fin and tube by the operating temperature range of the compressed air.

고온의 예열공기를 이용한 액체연료의 분무 연소특성에 관한 실험적 연구 (Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air)

  • 박민철;김동일;오상헌
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 2002
  • An experimental study has been carried on high-preheated temperature air combustion. The flames with high-preheated temperature air combustion turned out to be both temporally and spatially much more stable and homogeneous than these with room-temperature combustion air. The global flame feature showed a range of flame colors (yellow, blue, blurish-green) according to the flame conditions. A low level of NOx along with low level of CO has been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on the preheated temperature and the oxygen concentration of air.

  • PDF

한국의 냉난방 설계용 외기조건 분석 (An Analysis of the Outdoor Design Conditions for Heating and Air Conditioning in Korea)

  • 방규원
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.322-356
    • /
    • 1985
  • The outdoor design conditions for summer and winter are basic data required for determining the heating and cooling loads and HVAC equipment capacity. The latest study reported was based on the 1960's weather data, which is widely used by HVAC design engineers in Korea. The purpose of this paper is to update the outdoor design conditions for HVAC loads and equipments based on the weather data for the 1970's. The weather conditions of 24 sites, namely Sokcho, Chuncheon, Gangreung, Seoul, Inchon, Ulreungdo, Suweon, Seosan, Cheongju, Daejeon, Chupungryeong, Pohang, Gunsan, Daegu, Jeonju, Ulsan, Kwangju, Busan, Chungmu, Mokpo, Yeosu, Jeju, Seogwipo, and Jinju have been analyzed to calculate the outdoor design conditions. This analys is performed on the basis of TAC $1\%,\;TAC\;2.5\%,\;and\;TAC\;5\%$.

  • PDF

보텍스튜브 성능향상을 위한 유입노즐 조건에 관한 연구 (Inflow Nozzle Conditions for Improving Vortex Tube Performance)

  • 최훈기;유근종;임윤승
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.68-76
    • /
    • 2018
  • A vortex tube is a simple energy separating device that splits a compressed air stream into a cold and hot stream without any external energy supply or chemical reactions. The efforts of many researchers and designers have been focused on improvement of vortex tube efficiency by changing the parameters affecting vortex tube operation. The effective parameters are nozzle specifications and inflow pressure conditions. Effects of different nozzle cross-sectional area and number of nozzles are evaluated by computational fluid dynamics (CFD) analysis. In this study, CFD analysis of 3-D steady state and turbulent flow through a vortex tube was performed. We investigated the cold air mass flow rate, the cold air temperature, and the cold air heat transfer rate behavior of a vortex tube by utilizing seven straight nozzles and four inflow pressure conditions.