• Title/Summary/Keyword: agitation conditions

Search Result 274, Processing Time 0.029 seconds

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF

Increased Production of an Alkaline Protease from Bacillus clausii I-52 by Chromosomal Integration (Bacillus clausii I-52의 Chromosomal Integration에 의한 Alkaline Protease의 생산성 향상)

  • Joo, Han-Seung;Park, Dong-Chul;Choi, Jang-Won
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.163-176
    • /
    • 2012
  • TTo increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome binding site, signal sequence and active protease gene was constructed and transferred into B. clausii I-52, and integration of the constructed plasmid into chromosome was identified by PCR. An investigation was carried out on BCAP production by B. clausii I-52 and transformant C5 showing the highest relative activity of alkaline protease using submerged fermentation. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at $37^{\circ}C$ for 48 h with an aeration rate of 1 vvm and agitation rate of 650 rpm in a optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_47H_2O$ 0.01%, $FeSO_47H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). A protease yield of approximately 134,670U/ml was achieved using an optimized media, which show an increase of approximately 1.6-fold compared to that of non-transformant (83,960 U/ml). When the stability of transformant C5 was examined, the integrated plasmid pHPS9-fuBCAP was detected in the transformant after cultivation for 8 days, suggesting that it maintained stably in the chromosomal DNA of transformant C5.

Effect of Agitation and Additive on the Vaterite Contents of Precipitated Calcium Carbonate from Oyster Shell Waste (폐 굴껍질 이용 침강성 탄산칼슘 제조에서 교반속도와 첨가제가 Vaterite 함유량에 미치는 영향)

  • Young-Cheol Bak
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.95-101
    • /
    • 2023
  • An experiment was conducted to produce vaterite-type precipitated calcium carbonate from waste oyster shells in order to use them as recyclable resources. Calcined oyster shells containing calcium oxide as their main component were prepared at a temperature of 800℃ for 24 h. The oyster shells were dissolved in nitric acid or hydrochloric acid solution to make 0.1 M calcium nitrate or calcium chloride aqueous solution, and a carbonation reaction was performed using a 0.1 M sodium carbonate aqueous solution under various experimental conditions, which included varying the amount of aspatic acid additive, the amount of NH4OH added, the reaction time, the reaction temperature, the stirring speed, and the type of dissolved acid. The XRD, SEM, and size distributions were analyzed and the vaterite content was calculated. Spherical precipitated calcium carbonate with a vaterite content of 95.9% was synthesized by adding 0.1 mol aspatic acid/1 mol CaO and 2 cm3 of NH4OH, and reacting for 1 h at 25℃ while stirring at 600 rpm. The average particle diameter was found to be 12.11 ㎛. Calcium carbonate contatining high vaterite is used as high value added calcium carbonate for medical, food, inke additiver, etc.

Kinetics of esterification of food waste oil by solid acid catalyst and reaction optimization (고체 산 촉매를 이용한 고산가 음폐유의 에스테르화 반응 동역학 연구 및 반응 최적화)

  • Lee, Hwa-Sung;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.683-693
    • /
    • 2017
  • Transport biofuels have been recognized as a promising means to resolve the following issues like global warming, oil depletion and environmental pollutions. Among various biofuels, biodiesel has several advantages such as less emission of air pollutants and higher cetane values compared to diesel oil. Demand for biodiesel in Korea is increasing that leads to higher dependence on the imported feedstocks. Therefore, it is important to utilize the waste materials collected domestically for biodiesel production. Food waste oil collected in waste treatment facility has not been used for biodiesel production due to high free fatty contents in the oil. In this work, biodiesel conversion of food waste oil by Amberlyst 15 was studied. Synthetic and actual food waste oils have been used in the study. First, the effects of the major operating parameters including reaction temperature, methanol to oil molar ratio and catalyst loading on the conversion rates and yields were determined with synthetic waste oil. Kinetic modelling work was also done to determine the activation energy of the reaction. From the work, optimization reaction conditions were determined to be 383K, 1: 26.1 for methanol molar ratio to oil, 10 wt.% for catalyst loading and 360 min for reaction time. Activation energy of the reaction is determined to be 29.75 kJ/mol, lower than those reported in the previous works. So the solid catalyst, Amberlyst 15, was more efficient for esterification than the solid catalysts employed in the other works. Agitation rates have the negligible effects on the conversion rates and yields. With the identified optimization conditions, conversion of the actual food waste oil was also carried out. The esterification yield of actual food waste oil in 60 min was 13% lower than that of synthetic waste oil but the final yields in 240 min were similar each other, 98.12% for synthetic oil and 97.62% for actual waste oil.