Browse > Article

Increased Production of an Alkaline Protease from Bacillus clausii I-52 by Chromosomal Integration  

Joo, Han-Seung (C & J Biotech. Jinju Bio21 Center)
Park, Dong-Chul (Dept. of Hotel & Food Service Industry, Gimcheon Univ.)
Choi, Jang-Won (Dept. of Bioindustry, Daegu Univ.)
Publication Information
Journal of agriculture & life science / v.46, no.1, 2012 , pp. 163-176 More about this Journal
Abstract
TTo increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome binding site, signal sequence and active protease gene was constructed and transferred into B. clausii I-52, and integration of the constructed plasmid into chromosome was identified by PCR. An investigation was carried out on BCAP production by B. clausii I-52 and transformant C5 showing the highest relative activity of alkaline protease using submerged fermentation. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at $37^{\circ}C$ for 48 h with an aeration rate of 1 vvm and agitation rate of 650 rpm in a optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_47H_2O$ 0.01%, $FeSO_47H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). A protease yield of approximately 134,670U/ml was achieved using an optimized media, which show an increase of approximately 1.6-fold compared to that of non-transformant (83,960 U/ml). When the stability of transformant C5 was examined, the integrated plasmid pHPS9-fuBCAP was detected in the transformant after cultivation for 8 days, suggesting that it maintained stably in the chromosomal DNA of transformant C5.
Keywords
Chromosomal integration; Expression; Alkaline protease; Bacillus clausii;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Albertini, A. M. and A. Galizzi. 1985. Amplification of chromosomal region in Bacillus subtilis. J. Bacteriol. 163: 1203-1211.
2 Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213-219.   DOI
3 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
4 Bron, S. and E. Luxen. 1985. Segregational instability of pUB110 derived recombinants in Bacillus subtilis. Plasmid. 14: 234-244.
5 Bryan, P. N. 2000. Protein engineering of subtilisin. Biochim. Biophys. Acta. 1543: 203-222.   DOI
6 Estell, D. D., T. P. Graycar, and J. A. Wells. 1985. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260: 6518-6521.
7 Gessesse, A. 1997. The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. 62: 59-61.   DOI
8 Gupta, R., K. Gupta, R. K. Saxena, and S. Khan. 1999. Bleach-stable alkaline protease from Bacillus sp. Biotechnol. Lett. 21: 135-138.   DOI
9 Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381-395.   DOI
10 Haima, P., S. Bron, and G. Venema. 1990. Novel plasmid marker rescue transformation system for molecular cloning in Bacillus subtilis enabling direct selection of recombinants. Mol. Gen. Genet. 223: 185- 191.
11 Harington, A., T. G. Watson, M. E. Louw, J. E. Rodel, and J. A. Thomson. 1988. Stability during fermentation of a recombinant $\alpha$-amylase plasmid in Bacillus subtilis. Appl. Microbiol. Biotechnol. 27: 521-527.   DOI
12 Horikoshii, K. 1999. Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
13 Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles. 2: 185-190.   DOI
14 Jacobs, M. F. 1995. Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis. Gene. 152: 67-74.
15 Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie. 90: 1291-1305.   DOI
16 Kumar, C. G., M. P. Tiwari, and K. D. Jany. 1999. Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization. Process Biochem. 34: 441-449.   DOI
17 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22: 680-685.
18 Lin, X., S. L. Wong, E. S. Miller, and J. C. H., Shih. 1997. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J. Indust. Microbiol. Biotechnol. 19: 134-138.   DOI
19 Lopez, P., M. Espinosa, B. Greenberg, and S. A. Lacks. 1984. Generation of deletions in pneumococcal mal genes cloned in Bacillus. Proc. Natl. Acad. Sci. USA 81: 5189-5193.   DOI
20 Mallonee, D. and A. Speckman. 1989. Transformation of Bacillus polymyxa with plasmid DNA. Appl. Environ. Microbiol. 55: 2517-2521.
21 Manachini, P. L. and M. G. Fortina. 1998. Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. 20: 565-568.   DOI
22 Maurer, K. H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334.   DOI
23 Primrose, S. B. and S. D. Ehrlich. 1981. Isolation of plasmid deletion mutants and study of their instability. Plasmid. 6: 193-200.   DOI
24 Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
25 Rao, C. S., T. Sathish, P. Ravichandra, and R. S. Prakasham. 2009. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem. 44: 262-268.   DOI
26 Saeki, K., J. Hitomi, M. Okuda, Y. Hatada, Y. Kageyama, M. Takaiwa, H. Kubota, H. Hagihara, T. Kobayashi, S. Kawai, and S. Ito. 2002. A novel species of alkalophilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles. 6: 65-72.   DOI
27 Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito. 2007. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. 103: 501-508.   DOI
28 Jaouadi, B., N. Aghajari, R. Haser, and S. Bejar. 2010. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie. 92: 360-369.   DOI
29 Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159.   DOI
30 Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. Microbiol. 95: 267-272.   DOI
31 Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2004. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. 39: 1441-1447.   DOI
32 Joo, H. S., Y. M. Koo, J. W. Choi, and C. S. Chang. 2005. Stabilization method of an alkaline protease from inactivation by heat, SDS and hydrogen peroxide. Enz. Microb. Technol. 36: 766-772.   DOI
33 Joo, H.S. and C. S. Chang. 2005a. Production of protease from a new alkalophilic Bacilus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40: 1263-1270.   DOI
34 Joo, H. S. and C. S. Chang. 2005b. Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J. Appl. Microbiol. 98: 491-497.   DOI
35 Joo, H. S. and C. S. Chang. 2006. Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: Feasibility as a laundry detergent additive. Enz. Microb. Technol. 38: 176-183.   DOI
36 Joo, H. S. and C. W. Choi. 2011. Cloning and expression of a alkaline protease from Bacillus clausii I-52. J. Agric. Life Sci. 45: 201-212.
37 Karr-Lilienthal, L. K., C. M. Grieshop, J. K. Spears, and G. C. Fahey. 2005. Amino acid, carbohydrate, and fat composition of soybean meals prepared at 55 commercial U.S. soybean processing plants. J. Agric. Food Chem. 53: 2146-2150   DOI
38 Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594.   DOI
39 van der Laan, J. C., G. Gerritse, L. J. S. M. Mulleners, R. A. C. van der Hoek, and W. Quax. 1991. Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl. Environ. Microbiol. 57: 901-909.
40 Wang, J. J., K. Rojanatavorn, and J. C. H. Shih. 2004. Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene. Biotechnol. Bioengineer. 87: 460-464.
41 Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L.Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enz. Microb. Technol. 26: 406-413.   DOI
42 Young, M. 1984. Gene amplification in Bacillus subtilis. J. Gen. Microbiol. 130: 1913-1921.