Increased Production of an Alkaline Protease from Bacillus clausii I-52 by Chromosomal Integration

Bacillus clausii I-52의 Chromosomal Integration에 의한 Alkaline Protease의 생산성 향상

  • 주한승 (씨앤제이바이오텍(주)) ;
  • 박동철 (김천대학교 호텔외식산업학과) ;
  • 최장원 (대구대학교 바이오산업학과)
  • Received : 2012.01.08
  • Accepted : 2012.02.24
  • Published : 2012.02.28

Abstract

TTo increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome binding site, signal sequence and active protease gene was constructed and transferred into B. clausii I-52, and integration of the constructed plasmid into chromosome was identified by PCR. An investigation was carried out on BCAP production by B. clausii I-52 and transformant C5 showing the highest relative activity of alkaline protease using submerged fermentation. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at $37^{\circ}C$ for 48 h with an aeration rate of 1 vvm and agitation rate of 650 rpm in a optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_47H_2O$ 0.01%, $FeSO_47H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). A protease yield of approximately 134,670U/ml was achieved using an optimized media, which show an increase of approximately 1.6-fold compared to that of non-transformant (83,960 U/ml). When the stability of transformant C5 was examined, the integrated plasmid pHPS9-fuBCAP was detected in the transformant after cultivation for 8 days, suggesting that it maintained stably in the chromosomal DNA of transformant C5.

인천 연안 갯벌에서 분리한 호알카리성 Bacillus clausii I-52로부터 세포외 알카리성 단백질 분해효소(BCAP)의 발현 및 생산성을 증가시키기 위하여 BCAP promoter, ribosome 결합 서열, 신호서열, 전구체 서열 및 활성형 BCAP 유전자를 cloning한 재조합 plasmid pHPS9-fuBCAP을 penicillin-protoplast 법으로 B. clausii I-52의 염색체 DNA에 integration 하였고, 도입된 plasmid pHPS9-fuBCAP 유전자는 PCR에 의해 확인하였다. 가장 높은 단백질 분해효소 상대 활성을 보이는 선별된 transformant C5를 생산 최적화 배지(대두박 2%, 밀가루 1%, 구연산나트륨 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_47H_2O$ 0.01%, $FeSO_47H_2O$ 0.05%, 물엿 2.5%, 탄산나트륨 0.6%)에서 액침 배양법(배양온도, $37^{\circ}C$; 배양 시간, 48 h; 교반 속도, 650 rpm; 통기 속도, 1 vvm)으로 배양하여 단백질 분해효소를 발현 및 분비시켰을 때, BCAP 발현 양(134,670 U/ml)은 wild-type(83,960 U/ml)에 비하여 약 1.6 배 증가하였으며, 비활성도(91,611.5 U/mg 단백질)는 wild-type(71,760 U/mg 단백질)에 비하여 약 1.3 배 증가하였다. 또한, B. clausii I-52 염색체 DNA에 integration된 pHPS9-fuBCAP plasmid는 단백질 발현과 함께 8일간의 계대배양 동안에 안정하게 유지되고 있음을 확인하였다.

Keywords

References

  1. Albertini, A. M. and A. Galizzi. 1985. Amplification of chromosomal region in Bacillus subtilis. J. Bacteriol. 163: 1203-1211.
  2. Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213-219. https://doi.org/10.1016/S0032-9592(99)00053-9
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Bron, S. and E. Luxen. 1985. Segregational instability of pUB110 derived recombinants in Bacillus subtilis. Plasmid. 14: 234-244.
  5. Bryan, P. N. 2000. Protein engineering of subtilisin. Biochim. Biophys. Acta. 1543: 203-222. https://doi.org/10.1016/S0167-4838(00)00235-1
  6. Estell, D. D., T. P. Graycar, and J. A. Wells. 1985. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260: 6518-6521.
  7. Gessesse, A. 1997. The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. 62: 59-61. https://doi.org/10.1016/S0960-8524(97)00059-X
  8. Gupta, R., K. Gupta, R. K. Saxena, and S. Khan. 1999. Bleach-stable alkaline protease from Bacillus sp. Biotechnol. Lett. 21: 135-138. https://doi.org/10.1023/A:1005478117918
  9. Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381-395. https://doi.org/10.1007/s00253-002-1142-1
  10. Haima, P., S. Bron, and G. Venema. 1990. Novel plasmid marker rescue transformation system for molecular cloning in Bacillus subtilis enabling direct selection of recombinants. Mol. Gen. Genet. 223: 185- 191.
  11. Harington, A., T. G. Watson, M. E. Louw, J. E. Rodel, and J. A. Thomson. 1988. Stability during fermentation of a recombinant $\alpha$-amylase plasmid in Bacillus subtilis. Appl. Microbiol. Biotechnol. 27: 521-527. https://doi.org/10.1007/BF00451625
  12. Horikoshii, K. 1999. Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
  13. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles. 2: 185-190. https://doi.org/10.1007/s007920050059
  14. Jacobs, M. F. 1995. Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis. Gene. 152: 67-74.
  15. Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie. 90: 1291-1305. https://doi.org/10.1016/j.biochi.2008.03.004
  16. Jaouadi, B., N. Aghajari, R. Haser, and S. Bejar. 2010. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie. 92: 360-369. https://doi.org/10.1016/j.biochi.2010.01.008
  17. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159. https://doi.org/10.1016/S0032-9592(02)00061-4
  18. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. Microbiol. 95: 267-272. https://doi.org/10.1046/j.1365-2672.2003.01982.x
  19. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2004. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. 39: 1441-1447. https://doi.org/10.1016/S0032-9592(03)00260-7
  20. Joo, H. S., Y. M. Koo, J. W. Choi, and C. S. Chang. 2005. Stabilization method of an alkaline protease from inactivation by heat, SDS and hydrogen peroxide. Enz. Microb. Technol. 36: 766-772. https://doi.org/10.1016/j.enzmictec.2005.01.002
  21. Joo, H.S. and C. S. Chang. 2005a. Production of protease from a new alkalophilic Bacilus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40: 1263-1270. https://doi.org/10.1016/j.procbio.2004.05.010
  22. Joo, H. S. and C. S. Chang. 2005b. Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J. Appl. Microbiol. 98: 491-497. https://doi.org/10.1111/j.1365-2672.2004.02464.x
  23. Joo, H. S. and C. S. Chang. 2006. Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: Feasibility as a laundry detergent additive. Enz. Microb. Technol. 38: 176-183. https://doi.org/10.1016/j.enzmictec.2005.05.008
  24. Joo, H. S. and C. W. Choi. 2011. Cloning and expression of a alkaline protease from Bacillus clausii I-52. J. Agric. Life Sci. 45: 201-212.
  25. Karr-Lilienthal, L. K., C. M. Grieshop, J. K. Spears, and G. C. Fahey. 2005. Amino acid, carbohydrate, and fat composition of soybean meals prepared at 55 commercial U.S. soybean processing plants. J. Agric. Food Chem. 53: 2146-2150 https://doi.org/10.1021/jf048385i
  26. Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  27. Kumar, C. G., M. P. Tiwari, and K. D. Jany. 1999. Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization. Process Biochem. 34: 441-449. https://doi.org/10.1016/S0032-9592(98)00110-1
  28. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22: 680-685.
  29. Lin, X., S. L. Wong, E. S. Miller, and J. C. H., Shih. 1997. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J. Indust. Microbiol. Biotechnol. 19: 134-138. https://doi.org/10.1038/sj.jim.2900440
  30. Lopez, P., M. Espinosa, B. Greenberg, and S. A. Lacks. 1984. Generation of deletions in pneumococcal mal genes cloned in Bacillus. Proc. Natl. Acad. Sci. USA 81: 5189-5193. https://doi.org/10.1073/pnas.81.16.5189
  31. Mallonee, D. and A. Speckman. 1989. Transformation of Bacillus polymyxa with plasmid DNA. Appl. Environ. Microbiol. 55: 2517-2521.
  32. Manachini, P. L. and M. G. Fortina. 1998. Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. 20: 565-568. https://doi.org/10.1023/A:1005349728182
  33. Maurer, K. H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334. https://doi.org/10.1016/j.copbio.2004.06.005
  34. Primrose, S. B. and S. D. Ehrlich. 1981. Isolation of plasmid deletion mutants and study of their instability. Plasmid. 6: 193-200. https://doi.org/10.1016/0147-619X(81)90066-4
  35. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
  36. Rao, C. S., T. Sathish, P. Ravichandra, and R. S. Prakasham. 2009. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem. 44: 262-268. https://doi.org/10.1016/j.procbio.2008.10.022
  37. Saeki, K., J. Hitomi, M. Okuda, Y. Hatada, Y. Kageyama, M. Takaiwa, H. Kubota, H. Hagihara, T. Kobayashi, S. Kawai, and S. Ito. 2002. A novel species of alkalophilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles. 6: 65-72. https://doi.org/10.1007/s007920100224
  38. Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito. 2007. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. 103: 501-508. https://doi.org/10.1263/jbb.103.501
  39. van der Laan, J. C., G. Gerritse, L. J. S. M. Mulleners, R. A. C. van der Hoek, and W. Quax. 1991. Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl. Environ. Microbiol. 57: 901-909.
  40. Wang, J. J., K. Rojanatavorn, and J. C. H. Shih. 2004. Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene. Biotechnol. Bioengineer. 87: 460-464.
  41. Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L.Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enz. Microb. Technol. 26: 406-413. https://doi.org/10.1016/S0141-0229(99)00164-7
  42. Young, M. 1984. Gene amplification in Bacillus subtilis. J. Gen. Microbiol. 130: 1913-1921.