• Title/Summary/Keyword: aggregate shape

Search Result 175, Processing Time 0.025 seconds

Influence of the Fine and Coarse Aggregate on the Fluidity of High Flowing Concrete (고유동콘크리트의 유동특성에 미치는 잔골재 및 굵은골재의 영향)

  • 김규용;이정율;박선규;정하선;이석홍;손영현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.301-306
    • /
    • 1998
  • Aggregate as the component of High Flowing Concrete has much influence on the properties of High Flowing Concrete according to the quality and condition because the aggregate occupy a lot of concrete volume. The shape and size of aggregate affect a lot spatial passibility and fillingability. The segregation is easy to occur when the rate of Fine aggregate is high so that Fluidity is much affected by aggregate factor. In this study, therefore, we try to understand the various fluidity according to the fine aggregate of standard grade rang, the size of Coarse aggregate and the rate of fine aggregate to confirm the manufacturing possibility of High Flowing Concrete by examination on the influence of fresh state of high flowing concrete such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

The Effects of Recycled Aggregate Shape on Compressive Strength and Slump of Recycled Concrete (재생골재 입형이 재생골재콘크리트의 압축강도와 슬럼프에 미치는 영향)

  • Jeong, Ji-Yong;Shim, Jong-Woo;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.97-100
    • /
    • 2006
  • The efforts have improved the absorbtion that in order to high the quality of recycled aggregates, and the shape. For the shape of recycled aggregates, the shape of usually aggregates can affect the strength of concrete in an indirect way. So that, in the study, effects is investigated the shape of recycled aggregates that affects the compressive strength and slump. In the result, the a improved shape have a beneficial effect on compressive strength and slump for of a high quality recycled aggregate, and these appear a larger effects in unit water ; $175kg/m^3$ or specified strength ; 24MPa.

  • PDF

A Study on the Use of Mine-Waste on the Chung-Buk Area as the Aggregate of Concrete(I) -Part I : The Aggregate Properties of Mine Waste- (충북지역 광산발석의 콘크리트용 골재화에 관한 연구 (I) -제1보 : 광산발석의 콘크리트용 골재로써의 특성-)

  • 류현기;윤기원;한천구;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.197-202
    • /
    • 1994
  • This study is designed for analyzing the physical properties of grading, shape, specific gravity and etcetera of mine-waste as the aggregate of concrete when mine waste is crushed by jaw crusher, and is aimed presenting the using the possibility, content and reference data for the quality control of practical use on the concrete using the mine-waste aggregate.

  • PDF

Experimental Evaluation of the Punching Shear Strength with Lightweight Aggregate Concrete Slabs (경량골재 콘크리트 바닥판의 펀칭전단강도의 실험적 평가)

  • Kim, Jung-Joong;Moon, Ji-Ho;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.361-367
    • /
    • 2014
  • This paper investigates the punching shear strength of lightweight aggregate concrete (LWAC) slabs through a series of experimental study. Five full scale slabs were constructed using normal concrete and four different types of LWAC. Each lightweight aggregate (LWA) used in this study had different sources (clay, shale, or slate) and shapes (crushed or spherical shape). Based on the test results, the effect of the lightweight aggregates (LWA) on the punching shear behavior was investigated. From the test results, it was found that the punching shear failure surface of LWAC slab with spherical shape coarse aggregate was less inclined than that with crushed shape coarse aggregate, which resulted in an increase of the area of the shear failure surface. As a result, it leads to the increased punching shear strength of the slab. On the other hand, the failure surfaces of LWAC slab with crushed shape coarse aggregate and normal coarse aggregate were inclined similarly. Finally, the test results of this study were compared with the punching shear strength obtained from current design models, such as ACI and CEB-FIP, to examine the validation of current design model to predict the punching shear strength of the LWAC slab.

Influence of Kind of Fine Aggregate on Fundamental Properties of Concrete (잔골재의 종류가 콘크리트의 기초적 특성에 미치는 영향)

  • Heo, Young-Sun;Han, Chang-Pyung;Han, Min-Cheol;Kwon, Oh-Hyun;Choi, Young-Wha;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.153-156
    • /
    • 2006
  • This study investigated influence of kind of fine aggregate on fundamental properties of concrete. For the properties of fluidity with various type of fine aggregate, lime stone crushed fine aggregate(Ls) exhibited favorable result, due to grain shape and particle distribution, and next was granite crushed fine aggregate(Gs), natural fine aggregate(Ns). Ns had the highest value of air content while Ls had the lowest, due to the effective filling performance by continuos particle distribution. Ls, Ns, Gs in an order had higher bleeding capacity and faster setting time. However, compressive and tensile strength value exhibited similar tendency, regardless of aggregate type.

  • PDF

Shape Improvement and Optimum Gradation of Dry Processed Bottom Ash for Lightweight Mortar (경량 모르터용 건식공정 바텀애시의 입형 개선 효과와 최적 입도)

  • Choi, Hong-Beom;Kim, Jin-Man;Sun, Jung-Soo;Han, Dong-Yeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • The aim of this research is suggesting dry processed bottom ash as a new and economical source of lightweight aggregate for mortar and concrete. The dry process of bottom ash is an advance method of water-free and no chloride because only cooled down by double dry conveyer belt systems. Furthermore, because of relatively slow cooling down process helps burning up the remaining carbon in bottom ash. Using this dry process bottom ash, to evaluate the feasibility of using as a lightweight aggregate for mortar and concrete, two-phase of experiments were conducted: 1) improving shape of the bottom ash, and 2) controlling grade of the bottom ash. From the first phase of experiment, additional abrasing process was conducted for round shape bottom ash, hence improved workability and compressive strength was achieved while unit weight was increased comparatively. Based on the better shape of bottom ash, from the second phase, various grades were adopted on cement mortar, standard grade showed the most favorable results on fresh and hardened properties. It is considered that the results of this research contribute on widening sustainable method of using bottom ash based on the dry process and increasing value of bottom ash as a lightweight aggregate for concrete.

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

Influencing Factor on Thermal Coefficient of Concrete due to Aggregate Types (골재종류가 콘크리트의 열팽창계수에 미치는 영향)

  • 김진철;양성철;김남호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.249-254
    • /
    • 2003
  • The thermal coefficient of concrete is measured using dilatometer (AASHTO TP60) and strain gage. Testing parameters such as six different coarse aggregate types, cycles of warming and cooling, specimen shape and measurement types were investigated to evaluate the influencing factors for thermal coefficient of concrete. According to experimental results, the thermal coefficient of concrete made with crushed aggregate showed 9.2 -10.$\mu\varepsilon/^{\circ}C$, , however recycled coarse aggregate classified type II showed a little increasing in comparison with crushed aggregate. The thermal coefficient of concrete made with recycled aggregate was reduced 0.2-0.4$\mu\varepsilon/^{\circ}C$, under temperature cycles. However, specimen shapes were revealed as mainly affecting factors on the thermal coefficient of concrete. Finally the thermal coefficient value determined by the dilatometer device was shown to be similar to the value from PML 60.

  • PDF

A Study on the Sound Absorption Properties of Sound Absorption Block using by Artificial Light Weight Aggregate (인공경량골재를 이용한 철도 흡음블록의 흡음특성에 관한 연구)

  • Kang, Duck-Man;Seo, Jae-Won;Lee, In-Yong;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.830-839
    • /
    • 2008
  • This study is designed to manufacture the upgraded sound absorption concrete by using foamed concrete by using artificial light weight aggregate which raises the continuous void ratio to increase the sound absorption ratio and improve the strength. In manufacturing the sound absorption block, the pre-foaming form is applied to generate continuous voids, controlling the density by the addition of bubbles. It is general that the more porosity creates, the weaker strength becomes. Each of specimens are used for this experiment and measured their absorption ratio to examine the absorption property depending on frequency. As a results of experiment, it is evaluated that the absorption capacity of the sound absorption block has relation to compression strength and surface shape.

  • PDF

Effect of Crushing Gap of Jaw Crusher on the Quality of Fine Aggregates Made with High-Strength Waste Concrete (조크러셔 파쇄간격이 고강도 폐콘크리트로 제조된 순환 잔골재의 품질에 미치는 영향)

  • Lim, Gun-Su;Lee, Jun-Seok;Lee, Dong-Yun;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.60-61
    • /
    • 2020
  • In this study, the recycled fine aggregates produced from the waste concrete by using Jaw crusher depending on crushing gap of Jaw crusher were studied to offer a solution for recycled fine aggregate for concrete. The results of the experiment showed that the factors that influence grading and water absorption ratio, density and grain shape were significantly characterized by the generation of the particulate matter and the crushing shape of the aggregate.

  • PDF