• 제목/요약/키워드: affinity for glucose

검색결과 77건 처리시간 0.02초

H-Y 항원의 정제 및 특성규명에 관한 연구 (Studies on the Purification and Characterization of H-Y Antigen)

  • 정미경;백정미;이정열;허용수;김창규;김종배
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제21권1호
    • /
    • pp.89-97
    • /
    • 1994
  • These studies were carried out to investigate the properties of H-Y antigen purified by immunoaffinity chromatography using monoclonal H-Y antibody. Immunoaffinity column was prepared by the coupling of monoclonal antibody to the Aminolink Coupling Gel. Murine testis supernatant was applied onto the column and eluted by O.lM glycine-HCl buffer and 31${\mu}g$ of H-Y Ag was eluted from one testis. Purified H-Y Ag strongly reacted with Con A and lentil from 6 different kinds of lectins tested, which may indicate that sugar moiety of H-Y Ag is composed of glucose, mannose and their derivatives. Con A-sepharose affinity column was used to purified H-Y Ag based on that H-Y Ag is glycoprotein. The fraction eluted by 0.2M Me-${\alpha}$-D-mannoside from the column loaded with murine testis supernatant was identified to be H-Y Ag by dot blot test. Molecular weight of the purified H-Y Ag was estimated by Sepharose G-75 gel filtration and SDS-PAGE, and showing that it was about 67,000 dalton. In fluorescence test, the ratio of XY embryos and XX embryos was 1:1.

  • PDF

Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Hwang Han-Joon;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.247-255
    • /
    • 2006
  • Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.

Expression and Characterization of Calcium- and Zinc-Tolerant Xylose Isomerase from Anoxybacillus kamchatkensis G10

  • Park, Yeong-Jun;Jung, Byung Kwon;Hong, Sung-Jun;Park, Gun-Seok;Ibal, Jerald Conrad;Pham, Huy Quang;Shin, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.606-612
    • /
    • 2018
  • The enzyme xylose isomerase (E.C. 5.3.1.5, XI) is responsible for the conversion of an aldose to ketose, especially xylose to xylulose. Owing to the ability of XI to isomerize glucose to fructose, this enzyme is used in the food industry to prepare high-fructose corn syrup. Therefore, we studied the characteristics of XI from Anoxybacillus kamchatkensis G10, a thermophilic bacterium. First, the gene coding for XI (xylA) was inserted into the pET-21a(+) expression vector and the construct was transformed into the Escherichia coli competent cell BL21 (DE3). The expression of recombinant XI was induced in the absence of isopropyl-thio-${\beta}$-galactopyranoside and purified using Ni-NTA affinity chromatography. The optimum temperature of recombinant XI was $80^{\circ}C$ and measurement of the heat stability indicated that 55% of residual activity was maintained after 2 h incubation at $60^{\circ}C$. The optimum pH was found to be 7.5 in sodium phosphate buffer. Magnesium, manganese, and cobalt ions were found to increase the enzyme activity; manganese was the most effective. Additionally, recombinant XI was resistant to the presence of $Ca^{2+}$ and $Zn^{2+}$ ions. The kinetic properties, $K_m$ and $V_{max}$, were calculated as 81.44 mM and $2.237{\mu}mol/min/mg$, respectively. Through redundancy analysis, XI of A. kamchatkensis G10 was classified into a family containing type II XIs produced by the genera Geobacillus, Bacillus, and Thermotoga. These results suggested that the thermostable nature of XI of A. kamchatkensis G10 may be advantageous in industrial applications and food processing.

Computational Optimization of Bioanalytical Parameters for the Evaluation of the Toxicity of the Phytomarker 1,4 Napthoquinone and its Metabolite 1,2,4-trihydroxynapththalene

  • Gopal, Velmani;AL Rashid, Mohammad Harun;Majumder, Sayani;Maiti, Partha Pratim;Mandal, Subhash C
    • 대한약침학회지
    • /
    • 제18권2호
    • /
    • pp.7-18
    • /
    • 2015
  • Objectives: Lawsone (1,4 naphthoquinone) is a non redox cycling compound that can be catalyzed by DT diaphorase (DTD) into 1,2,4-trihydroxynaphthalene (THN), which can generate reactive oxygen species by auto oxidation. The purpose of this study was to evaluate the toxicity of the phytomarker 1,4 naphthoquinone and its metabolite THN by using the molecular docking program AutoDock 4. Methods: The 3D structure of ligands such as hydrogen peroxide ($H_2O_2$), nitric oxide synthase (NOS), catalase (CAT), glutathione (GSH), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) were drawn using hyperchem drawing tools and minimizing the energy of all pdb files with the help of hyperchem by $MM^+$ followed by a semi-empirical (PM3) method. The docking process was studied with ligand molecules to identify suitable dockings at protein binding sites through annealing and genetic simulation algorithms. The program auto dock tools (ADT) was released as an extension suite to the python molecular viewer used to prepare proteins and ligands. Grids centered on active sites were obtained with spacings of $54{\times}55{\times}56$, and a grid spacing of 0.503 was calculated. Comparisons of Global and Local Search Methods in Drug Docking were adopted to determine parameters; a maximum number of 250,000 energy evaluations, a maximum number of generations of 27,000, and mutation and crossover rates of 0.02 and 0.8 were used. The number of docking runs was set to 10. Results: Lawsone and THN can be considered to efficiently bind with NOS, CAT, GSH, GR, G6PDH and NADPH, which has been confirmed through hydrogen bond affinity with the respective amino acids. Conclusion: Naphthoquinone derivatives of lawsone, which can be metabolized into THN by a catalyst DTD, were examined. Lawsone and THN were found to be identically potent molecules for their affinities for selected proteins.

증숙 건조 방식으로 제조한 돼지감자차의 성분 및 기능성 (Components and Function of Artichoke Tea Prepared by Steaming and Drying Method)

  • 황은경;이선현;김병기;김수정;안용근;도륜;오성천
    • 한국응용과학기술학회지
    • /
    • 제36권1호
    • /
    • pp.1-12
    • /
    • 2019
  • 돼지감자를 9번 찌고 9번 말려서 차를 제조한 다음 M사의 돼지감자차와 성분 및 기능성을 비교 분석하였다. 개발한 돼지감자차는 칼로리 342.27kcal, 탄수화물 73.87g/100g, 유리당 32.66mg/100g, 회분 6.80g/100g, 단백질 8.21g/100g이었고 무기물 총량은 2,785.67mg/100g, 칼륨 2,563.93mg/g, 칼슘 97.52mg/g, 마그네슘 88.78mg/g 등이었다. 돼지감자차의 유리당 총량은 32.66mg/100g이고 그중 fructose 17.40mg/100g, sucrose 9.03mg/100g, glucose 6.05mg/100g이었다. 돼지감자 차의 포화지방산은 30.34mg/100g, 4 불포화지방산은 69.66mg/100g이었고 그 중 linoleic acid 47.00mg/100g, palmitic acid 25.31mg/100g, linolenic acid 8.61mg/100g이었다. DPPH 라디컬 소거력은 개발한 차 34.2%, 비교용 M사차 5.2%, 지표물질 44.0%였다. ABTS 라디컬 소거력은 개발한 차 93.0%, M사차 61.9%, 지표물질 47.6%였다. SOD 유사활성은 개발한 차 2.7%, M사차 1.6%였다. 플라보노이드 함량은 개발한 차 2.8 fold, M사차 2.0 fold, 지표물질 1.7 fold 였다. 폴리페놀 함량은 개발한 차 38.2 fold, M사차 8.92 fold, 지표물질 14.0 fold였다. ${\alpha}$-Glucosidase 저해율은 개발한 차 9.83%, M사차 8.92%였다. 기호도는 1회 우린 것과 5회 우린 것을 비교하였다. 1회 우린 것을 기준으로 할 때 5회 우린 것의 기호도 중 색은 개발한 차 83.7%, 비교용 차 50.0%, 향기는 개발한 차 78.0%, 비교용 차 42.5%, 맛은 개발한 차 66.7%, 비교용 차 37.5%, 종합적인 기호도는 개발한 차 73.3%, 비교용 차 47.5%로 나타났다. 이같이 비교용 M사차는 우릴수록 추출 성분이 감소하여 5회 후에 종합적인 기호도는 46.3%로 감소한 반면 개발한 차는 감소폭이 적어서 73.3%를 나타냈다. 이같이 개발한 돼지감자차는 비교용 M사차 및 지표물질보다 항산화 작용이 강하고 유효 물질 함량도 더 많고, 기호성도 높으므로 질병 예방 및 개선 효과가 클 것으로 생각한다.

대장균이 생산한 재조합 인체 감마인터페론의 발현과 정제 (Expression and Purification of Recombinant Human Interferon-gamma Produced by Escherichia coli)

  • 박정렬;김성우;김재범;정우혁;한명완;조영배;정준기
    • KSBB Journal
    • /
    • 제21권3호
    • /
    • pp.204-211
    • /
    • 2006
  • IFN-${\gamma}$의 대량생산을 위한 기초연구로서 IFN-${\gamma}$의 아미노 말단에 glucagon과 ferritin을 융합파트너로 각각 결합시켜 재조합 IFN-${\gamma}$의 발현을 유도하였다. 대장균 내에서 발현되는 IFN-${\gamma}$는 그 자체로 매우 강한 소수성 결합의 양상을 나타내어 inclusion body 형태로 발현된다고 알려져 있으나 OrigamiTM(DE3) 균주로부터 50% 이상의 수용성 형태로 발현시켰다. IFN-${\gamma}$로부터 융합파트너를 제거할 수 있는 system을 개발하기 위해 융합파트너와 IFN-${\gamma}$ 사이에 enterokinase cleavage site를 도입하였으며, enterokinase에 의해 IFN-${\gamma}$에는 영향을 미치지 않고 효과적으로 융합파트너를 제거할 수 있었다. 재조합 IFN-${\gamma}$의 분리 및 정제를 위해 발현벡터상의 융합파트너와 IFN-${\gamma}$사이에 6X His-tag을 도입하였고 융합파트너의 N-말단에도 6X His-tag을 추가적으로 도입함으로써 융합파트너와 더불어 enterokinase에 의해 분해되지 않은 융합단백질을 Ni-NTA agarose column으로 제거함으로서 IFN-${\gamma}$를 완전 정제할 수 있었다. IFN-${\gamma}$의 발현을 유도하는 발현유도체로서 15 mM lactose를 이용하여 5 L 발효조에서 IFN-${\gamma}$의 발현을 검토한 결과, 재조합 균체의 단위 건조질량(dry cell weight, g)으로 약 11 g DCW/L 수준의 재조합 융합단백질을 얻을 수 있었다.

Imaging Neuroreceptors in the Living Human Brain

  • Wagner Jr Henry N.;Dannals Robert F.;Frost J. James;Wong Dean F.;Ravert Hayden T.;Wilson Alan A.;Links Jonathan M.;Burns H. Donald;Kuhar Michael J.;Snyder Solomon H.
    • 대한핵의학회지
    • /
    • 제18권2호
    • /
    • pp.17-23
    • /
    • 1984
  • For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human mind in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On May 25, 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuro-receptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. The growth of any scientific field is based on a paradigm or set of ideas that the community of scientists accepts. The unifying principle of nuclear medicine is the tracer principle applied to the study of human disease. Nineteen hundred and sixty-three was a landmark year in which technetium-99m and the Anger camera combined to move the field from its latent stage into a second stage characterized by exponential growth within the framework of the paradigm. The third stage, characterized by gradually declining growth, began in 1973. Faced with competing advances, such as computed tomography and ultrasonography, proponents and participants in the field of nuclear medicine began to search for greener pastures or to pursue narrow sub-specialties. Research became characterized by refinements of existing techniques. In 1983 nuclear medicine experienced what could be a profound change. A new paradigm was born when it was demonstrated that, despite their extremely low chemical concentrations, in the picomolar range, it was possible to image and quantify the distribution of receptors in the human body. Thus, nuclear medicine was able to move beyond physiology into biochemistry and pharmacology. Fundamental to the science of pharmacology is the concept that many drugs and endogenous substances, such as neurotransmitters, react with specific macromolecules that mediate their pharmacologic actions. Such receptors are usually identified in the study of excised tissues, cells or cell membranes, or in autoradiographic studies in animals. The first imaging and quantification of a neuroreceptor in a living human being was performed on May 25, 1983 and reported in the September 23, 1983 issue of SCIENCE. The study involved the development and use of carbon-11 N-methyl spiperone (NMSP), a drug with a high affinity for dopamine receptors. Since then, studies of dopamine and serotonin receptors have been carried out in over 100 normal persons or patients with various neuropsychiatric disorders. Exactly one year later, the first imaging of opitate receptors in a living human being was performed [1].

  • PDF