DOI QR코드

DOI QR Code

Components and Function of Artichoke Tea Prepared by Steaming and Drying Method

증숙 건조 방식으로 제조한 돼지감자차의 성분 및 기능성

  • 황은경 (경북전문대학교 호텔조리제빵과) ;
  • 이선현 (경북전문대학교 호텔조리제빵과) ;
  • 김병기 (경상북도 축산기술연구소) ;
  • 김수정 (시크제네시스) ;
  • 안용근 (한국사찰음식문화협회) ;
  • 도륜 (한국사찰음식문화협회) ;
  • 오성천 (대원대학교 제약품질관리과)
  • Received : 2018.09.10
  • Accepted : 2019.01.15
  • Published : 2019.03.31

Abstract

After making tea by steaming the Artichoke(Hellanthus tuberosus) nine times and drying them nine times, the ingredients and functions of the Artichoke tea were compared to those of M. It had 342.27kcal/100g in its own deloped Artichoke tea, 73.87g/100g of carbohydrates, 6.80g/100g of crude ash and 8.21g/100g of crude protein. The total of free sugars were 32.66mg/100, among them, fructose 17.40, sucrose 9.03 and glucose 6.05 mg/100g. The total mineral contents of the developed tea was 2,785.67mg/100g. It was 2,563.93mg/100g of potassium, 97.52mg/100g of calcium and 88.78mg/100g of magnesium. The saturated fat of Artichoke tea was 30.34mg/100g and unsaturated fat was 69.66mg/100g, among which the linoleic acid was 47.0mg/100%, palmitic acid was 25.31mg/100% and linolenic acid was 8.61mg/100g. DPPH radical scavenging was 34.2% of teas that were developed, 5.2% of M's for comparison, and 44.0% of index materials. ABTS radical scavenging was 93.0% of teas developed, 61.9% of M's tea and 47.6% of index materials, and SOD like activity was 2.7% of teas developed and 1.6% of M's tea. The flavonoid content was 2.8 fold of the tea developed, 2.0 fold of M's tea and 1.7 fold of index material. The polyphenol content was 38.2 fold, 8.92 fold of M's tea and 14.0 fold of index material. The inhibition rate for ${\alpha}$-glucosidase was 9.83% teas developed and 8.92% of M's. The sensory evaluation compares to the one time extract and the five time extract. Based on the one-time extract, color of tea developed was 83.7%, the M's tea was 50.0%, the flavor was 78%, M's tea was 42.5%, the delicate taste was 66.7% of teas developed and M's tea was 37.5% and the overall acceptability was 73.3% of teas developed, M's tea was 47.5%. The comparison of M's tea showed that the extract decreased as we made it, and the overall symbol level decreased to 46.3% after five time-extyracts, while that of the developed tea decreased to 73.3%. The Artichoke tea developed this way is believed to have greater antioxidant function, higher effective substance content, and a higher affinity than M's tea an index material for comparison purposes.

돼지감자를 9번 찌고 9번 말려서 차를 제조한 다음 M사의 돼지감자차와 성분 및 기능성을 비교 분석하였다. 개발한 돼지감자차는 칼로리 342.27kcal, 탄수화물 73.87g/100g, 유리당 32.66mg/100g, 회분 6.80g/100g, 단백질 8.21g/100g이었고 무기물 총량은 2,785.67mg/100g, 칼륨 2,563.93mg/g, 칼슘 97.52mg/g, 마그네슘 88.78mg/g 등이었다. 돼지감자차의 유리당 총량은 32.66mg/100g이고 그중 fructose 17.40mg/100g, sucrose 9.03mg/100g, glucose 6.05mg/100g이었다. 돼지감자 차의 포화지방산은 30.34mg/100g, 4 불포화지방산은 69.66mg/100g이었고 그 중 linoleic acid 47.00mg/100g, palmitic acid 25.31mg/100g, linolenic acid 8.61mg/100g이었다. DPPH 라디컬 소거력은 개발한 차 34.2%, 비교용 M사차 5.2%, 지표물질 44.0%였다. ABTS 라디컬 소거력은 개발한 차 93.0%, M사차 61.9%, 지표물질 47.6%였다. SOD 유사활성은 개발한 차 2.7%, M사차 1.6%였다. 플라보노이드 함량은 개발한 차 2.8 fold, M사차 2.0 fold, 지표물질 1.7 fold 였다. 폴리페놀 함량은 개발한 차 38.2 fold, M사차 8.92 fold, 지표물질 14.0 fold였다. ${\alpha}$-Glucosidase 저해율은 개발한 차 9.83%, M사차 8.92%였다. 기호도는 1회 우린 것과 5회 우린 것을 비교하였다. 1회 우린 것을 기준으로 할 때 5회 우린 것의 기호도 중 색은 개발한 차 83.7%, 비교용 차 50.0%, 향기는 개발한 차 78.0%, 비교용 차 42.5%, 맛은 개발한 차 66.7%, 비교용 차 37.5%, 종합적인 기호도는 개발한 차 73.3%, 비교용 차 47.5%로 나타났다. 이같이 비교용 M사차는 우릴수록 추출 성분이 감소하여 5회 후에 종합적인 기호도는 46.3%로 감소한 반면 개발한 차는 감소폭이 적어서 73.3%를 나타냈다. 이같이 개발한 돼지감자차는 비교용 M사차 및 지표물질보다 항산화 작용이 강하고 유효 물질 함량도 더 많고, 기호성도 높으므로 질병 예방 및 개선 효과가 클 것으로 생각한다.

Keywords

Table 1. Analytical conditions of HPLC for the determination of free sugars

HGOHBI_2019_v36n1_1_t0001.png 이미지

Table 2. Analytical conditions of GC for the determination of free fatty acid

HGOHBI_2019_v36n1_1_t0002.png 이미지

Table 3. Analytical conditions of ICP for the determination of mineral

HGOHBI_2019_v36n1_1_t0003.png 이미지

Table 4. General contents of Artichoke tea

HGOHBI_2019_v36n1_1_t0004.png 이미지

Table 5. Mineral contents of Artichoke tea (mg/100g)

HGOHBI_2019_v36n1_1_t0005.png 이미지

Table 6. Free sugar contents of Artichoke tea (g/100g)

HGOHBI_2019_v36n1_1_t0006.png 이미지

Table 7. Fatty acid contents of Artichoke tea (mg/100g)

HGOHBI_2019_v36n1_1_t0007.png 이미지

Table 8 Functional effects of Burdock tea

HGOHBI_2019_v36n1_1_t0008.png 이미지

Table 9. Preference for color, flavor, taste and overall acceptance of Artichoke tea

HGOHBI_2019_v36n1_1_t0009.png 이미지

References

  1. J. I. Kim, C. R., Bae and Y. S. Cha. Heliabthus tuberosus extract has antidiadiabetes effects in HIT-T15 cells. J Korean Soc. Food Sci. Nutr., Vol.39, pp.31-45, (2010). https://doi.org/10.3746/jkfn.2010.39.1.031
  2. X. Yuan, M. Gao, H, Xima, C. Tan and Y. Du. Free radical scacenging activities and bioactiva subtances of Jerusalem artichoke leaves. Food Chem., Vol.133, pp.10-14, (2012). https://doi.org/10.1016/j.foodchem.2011.09.071
  3. H. Y. Song. Physical characteristics of the mixed flour containing Jerusalem artichoke and white pan bread using It, Hankyong Univ. MS Thesis (2016).
  4. H. S. Park. Quality characteristics of sulgidduk Jerusalem artichoke. Korean j. Culinary Research., Vol.16(3), pp.259-267, (2010).
  5. M. H. Kim, H. Y. Kim, J. S. Han, E. H. Ji and A. J. Kim. Physicochemical analysis and quality characteristics of Jerusalem artichoke and Mook prepared with Jerusalem artichoke powder. Korean J. Food Nutr., Vol.28(4), pp.635-642, (2015). https://doi.org/10.9799/ksfan.2015.28.4.635
  6. K. K. Kang, S. Choi, J. S. Kim, G. C. Kim and K. M. Kim. Physiochemical characteristics of raw and dried Jerusalem artichoke Jangachi. J. East Asian Soc Dietary Life., Vol.25(5), pp.887-892 (2015). https://doi.org/10.17495/easdl.2015.10.25.5.887
  7. AOAC. Official Methods of Analysis of AOAC Int.16th ed. Association of Official Analytical Chemists. Washington, DC, USA (1995).
  8. Korean Soc. Food. Sci. Nutr. Food nutrition experiment handbook. Hyoil, p. 124-126, (2000).
  9. AOAC. Official Methods Analysis 13th ed. Association of Official Analytical Chemists. Washington D.C. USA. p 125-132, (1990).
  10. Korean Food Standards Codex. 7. General experiment. 2-1 General composition experiment p. 18, (2012).
  11. Wilson AM, Work TM, Bushway AA and Bushway. RJ HPLC determination of fructose, glucose and sucrose in potatoes. J. Food Sci., Vol.46, pp.300-306, (1981). https://doi.org/10.1111/j.1365-2621.1981.tb14589.x
  12. Morrison WR, Smith LM. Preparation of fatty acid methylesters and dimethylacetals from lipids with boron fluoridemethanol. J. Lipid Res., Vol.5, pp.600-608, (1964). https://doi.org/10.1016/S0022-2275(20)40190-7
  13. S. I. Yun, W. J. Cho, Y. D. Choi, S. H. Lee, S. H. Yoo, E. H. Lee and H. M. Ro. Distribution of heavy metals in soils of Shihwa tidal freshwater marshes. Korean J. Ecol., Vol.26, pp.65-70, (2003). https://doi.org/10.5141/JEFB.2003.26.2.065
  14. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature., Vol.29. pp.1199-1200, (1958). https://doi.org/10.1038/1811199a0
  15. Van den Berg R, Haenen GR, Van den Berg H and Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem., Vol.66, pp.511-517, (1999). https://doi.org/10.1016/S0308-8146(99)00089-8
  16. Markulnd, S. and Marklund, G., Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., Vol.47, pp.469-474, (1974). https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  17. S. K. Chae, G. S. Kang, S. J. Ma, K. W. Bang, M. W. Oh and S, H. Oh. Standard Food Analysis. Jigumoonhwasa, Seoul. p. 381-382, (2002).
  18. S. O. Lee, H. J. Lee, M. H. Yu, H. G. Im and I, S. Lee. Total polyphenol contents and antioxidant acivities of methanol extracts from vegetables produced in Ullung island. Korean J. Food Sci. Technol., Vol.37. pp.233-240, (2005).
  19. K. Y. Kim, K. A. Nam, H. Kurihara and S. M. Kim. Potent ${\alpha}$-glucosidase inhibitors purified from the red alga. Grateloupia elliptica. Phytochem., Vol.69. pp.2820-2825, (2008). https://doi.org/10.1016/j.phytochem.2008.09.007
  20. N. S. Gu, H. S. Kim, K. A. Lee, and M. J. Kim, Food sensory testing theory and experiment, 8. Method of measuring sensory characteristics. Gyomunsa (2014).
  21. B. M. Jung and T. S. Shin. Food components and antioxidant activities of dried Jerusalem artichoke with white and purple colors. J. Korean Soc. Food Sci. Nutr., Vol.45. pp.1114-1121, (2016). https://doi.org/10.3746/jkfn.2016.45.8.1114
  22. Y. L. Lee. Analysis of nutritional components and antioxidant activity of roasting Wooung and Jerusalem artichoke. Korean J. Food Nutr., Vol.29. pp.870-877, (2016). https://doi.org/10.9799/ksfan.2016.29.6.870
  23. C. H. Lee and Y. R. Lee. Antioxidative and antidiabetic activities of methanol extracts from different parts of Jerusalem artichoke. Korean J. Food Nutr., Vol.29. pp.128-133, (2016). https://doi.org/10.9799/ksfan.2016.29.1.128
  24. Mc Cord JM and Fridovich I. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem., Vol.244. pp.6049-6055, (1969). https://doi.org/10.1016/S0021-9258(18)63504-5
  25. H. J. Jeong, J. S. Kim, Y. J. Sa, M. O. Kim, J. Yang and M. J. Kim. Antioxidant activity and ${\alpha}$-glucosidase inhibitory effect of Jerusalem artichoke methanol extracts by heat treatment conditions. Korean J. Medicinal Crop Sci.. Vol.19. pp.257-263, (2011). https://doi.org/10.7783/KJMCS.2011.19.4.257