• Title/Summary/Keyword: affinity binding

Search Result 788, Processing Time 0.021 seconds

Establishment of a Binding Assay System for Screening of the Inhibitors of $p56^{lck}$ SH2 Domain

  • Kim, Jyn-Ho;Hur, Eun-Mi;Yun, Yung-Dae
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.370-376
    • /
    • 1998
  • Src-Homology 2 (SH2) domains have a capacity to bind phosphotyrosine-containing sequence context and play essential roles in various cellular signaling pathways. Due to the specific nature of the binding between SH2 domains and their counterpart proteins, inhibitors of SID domain binding have drawn extensive attention as a potential candidate for therapeutic agents. Here, we describe the binding assay system to screen for the ligands or blockers of the SH2 domains with an emphasis on the $p56^{lck}$ SH2 domain. In our assay system, SID domains expressed and purified as fusion proteins to Glutathione-S-transferase (GST) were covalently attached to 96-well microtitre plates through amide bond formation, which were subsequently allowed to bind the biotinylated phosphotyrosine (pY)containing synthetic pep tides. The binding of biotinylated pY peptides was detected by the horseradish peroxidase (HRP)-conjugated streptavidin. Using the various combinations of SH2 domain-pY peptides, we observed that: (1) The binding of pY-peptides to its counterpart SH2 domain is concentration-dependent and saturable; (2) The binding is highly specific for a particular combination of SH2 domain-pY peptide pair; and (3) The binding of Lck SH2-cognate pY-peptides is specifically competed by the nonbiotinylated peptides with expected relative affinity. These results indicate that the established assay system detects the SH2-pY peptide interaction with reproducible sensitivity and specificity and is suitable for screening the specific inhibitors of $p56^{lck}$ SH2 function.

  • PDF

Two Kinesins from Arabidopsis, KatB and KatC, Have a Second Microtubule-binding Site in the Tail Domain

  • Jiang, Shiling;Li, Ming;Xu, Tao;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.44-52
    • /
    • 2007
  • Kinesins, as a kind of microtubule-based motor proteins, have a conserved microtubule-binding site in their motor domain. Here we report that two homologous kinesins in Arabidopsis thaliana, KatB and KatC, contain a second microtubule-binding site in their tail domains. The prokaryotic-expressed N-terminal tail domain of the KatC heavy chain can bind to microtubules in an ATP-insensitive manner. To identify the precise region responsible for the binding, a serious of truncated KatC cDNAs encoding KatC N-terminal regions in different lengths, KatC1-128, KatC1-86, KatC1-73 and KatC1-63, fused to Histidine-tags, were expressed in E. coli and affinity-purified. Microtubule cosedimentation assays show that the site at amino acid residues 74-86 in KatC is important for microtubule-binding. By similarity, we obtained three different lengths of KatB N-terminal regions, KatB1-384, KatB1-77, and KatB1-63, and analyzed their microtubule-binding ability. Cosedimentation assays indicate that the KatB tail domain can also bind to microtubules at the same site as and in a similar manner to KatC. Fluorescence microscopic observations show that the microtubule-binding site at the tail domain of KatB or KatC can induce microtubules bundling only when the stalk domain is present. Through pull-down assays, we show that KatB1-385 and KatC1-394 are able to interact specifically with themselves and with each other in vitro. These findings are significant for identifying a previously uncharacterized microtubule-binding site in the two kinesin proteins, KatB and KatC, and the functional relations between them.

Brain Wave Control Effect of Smart-wave via Docking into the Odorant-binding Protein (스마트 웨이브 조성물질의 odorant 결합 단백질에 대한 분자 결합 친화도 비교 분석 및 후각 흡입으로 유도되는 뇌파 변화 연구)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.346-352
    • /
    • 2016
  • Aroma inhalation therapy has traditionally been used not only in alternative medicinal treatment but also in psychotherapy. In the first stage of the study, the in silico molecular binding affinity of the major ingredients of Smart-Wave (SW) on the active site of the odorant-binding protein (OBP) was compared with that of citrate anions. The binding affinity of the chemical mixture formula of the major ingredients of SW on the OBP was relatively higher than that of citrate anions. In addition, nasal inhalation of SW had a positive effect upon changes in brain waves. Eighteen healthy volunteers participated in the experiment. The study consisted of measurements of the brain’s meditation level recordings in the pre- and post-SW inhalation periods as compared with negative (EV) and positive (HB) control groups. After SW inhalation, all the subjects stated that they felt “fresher” and that the SW trial group had significantly changed the brain’s meditation in a positive way. SW inhalation also converted EV-induced unstable brain meditation wave patterns into more stable patterns. Collectively, the results of this empirical study strongly suggest that the SW mixture activates the OBP and controls the mental state by regulating brain waves. The results provide scientific evidence that the SW formula has potential as an effective mental-stress controller.

Generation of single stranded DNA with selective affinity to bovine spermatozoa

  • Vinod, Sivadasan Pathiyil;Vignesh, Rajamani;Priyanka, Mani;Tirumurugaan, Krishnaswamy Gopalan;Sivaselvam, Salem Nagalingam;Raj, Gopal Dhinakar
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1579-1589
    • /
    • 2021
  • Objective: This study was conducted to generate single stranded DNA oligonucleotides with selective affinity to bovine spermatozoa, assess its binding potential and explore its potential utility in trapping spermatozoa from suspensions. Methods: A combinatorial library of 94 mer long oligonucleotide was used for systematic evolution of ligands by exponential enrichment (SELEX) with bovine spermatozoa. The amplicons from sixth and seventh rounds of SELEX were sequenced, and the reads were clustered employing cluster database at high identity with tolerance (CD-HIT) and FASTAptamer. The enriched nucleotides were predicted for secondary structures by Mfold, motifs by Multiple Em for Motif Elicitation and 5' labelled with biotin/6-FAM to determine the binding potential and binding pattern. Results: We generated 14.1 and 17.7 million reads from sixth and seventh rounds of SELEX respectively to bovine spermatozoa. The CD-HIT clustered 78,098 and 21,196 reads in the top ten clusters and FASTAptamer identified 2,195 and 4,405 unique sequences in the top three clusters from the sixth and seventh rounds, respectively. The identified oligonucleotides formed secondary structures with delta G values between -1.17 to -26.18 kcal/mol indicating varied stability. Confocal imaging with the oligonucleotides from the seventh round revealed different patterns of binding to bovine spermatozoa (fluorescence of the whole head, spot of fluorescence in head and mid- piece and tail). Use of a 5'-biotin tagged oligonucleotide from the sixth round at 100 pmol with 4×106 spermatozoa could trap almost 80% from the suspension. Conclusion: The binding patterns and ability of the identified oligonucleotides confirms successful optimization of the SELEX process and generation of aptamers to bovine spermatozoa. These oligonucleotides provide a quick approach for selective capture of spermatozoa from complex samples. Future SELEX rounds with X- or Y- enriched sperm suspension will be used to generate oligonucleotides that bind to spermatozoa of a specific sex type.

Screening of Peptide Sequences with Affinity to Bisphenol A by Biopanning (바이오패닝에 의한 Bisphenol A 친화성 펩타이드 서열의 탐색)

  • Yoo, Ik-Keun;Choe, Woo-Seok
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.211-214
    • /
    • 2013
  • Bisphenol A (BPA) is a highly hazardous component to human since it is regarded as one of endocrine disruptors. For the analysis and/or removal of BPA, the searching for the specific ligand with a selective affinity to target BPA is required. In order to find the peptide moiety that specifically binds to BPA, the ultrasound-assisted biopanning was carried out with a phage-displayed peptide library expressing constrained heptamer. After six rounds of positive screening against BPA particles followed by the negative screening against the surface of eppendorf tube, the peptide sequence (CysLysSerLeuGluAsnSerTyrCys) with affinity to BPA was screened based on the order of frequency from the screened phage clones. To further verify the specificity of screened peptide sequence, the cross-binding affinity of the phage peptide toward BPA analogues such as Bisphenol S (BPS) and Bisphenol F (BPF) was also assessed, where the selected phage peptide showed a higher affinity to BPA over BPS and BPF.

Highly Active Analogs of α-Factor and Their Activities Against Saccharomyces cerevisiae

  • Ahn, Hee Jun;Hong, Eun Young;Jin, Dong Hoon;Hong, Nam Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1365-1374
    • /
    • 2014
  • Thirteen analogs of tridecapeptide ${\alpha}$-factor (WHWLQLKPGQPMY) of Saccharomyces cerevisiae with C- or N-terminal Trp extension and isosteric replacement by Aib at position 8 and 11, Trp at position 13, D-Ala at position 9, and Orn and Glu at position 6 were synthesized and assayed for their biological activity. Receptor binding assay was carried out using our newly developed spectrophotometric method with detector peptide 14. C- or N-terminal extended analogs, ${\alpha}$-factor-$[Trp]_n$ (n =1-5) 1-5 and $[N-Trp]_1$-${\alpha}$-factor 6, were all less active than native ${\alpha}$-factor and gradual decreases in both activity and receptor affinity were observed with greater Trp extension. Trp-substituted analog at position 13, $[Trp^{13}]{\alpha}$-factor 7, exhibited about 2-fold reductions in both activity and receptor affinity. Aib-substituted analogs, $[Aib^8]{\alpha}$-factor 8 and $[Aib^{11}]{\alpha}$-factor 9, showed 5- to 10-fold reduction in activity as well as 3-fold reduction in receptor affinity compared to native ${\alpha}$-factor. $[Orn^6]{\alpha}$-factor 10 demonstrated strong potency with a 7.0-fold increase in halo activity as well as 1.8-fold increase in receptor affinity compared to native ${\alpha}$-factor. For two double substituted analogs, [$Glu^6,{\small{D}}-Ala^9$]${\alpha}$-factor 12 showed the slightly decreased potency in halo activity compared to analog 10, whereas [$Orn^6,{\small{D}}-Ala^9$]${\alpha}$-factor 11 exhibited 15-fold higher halo activity as well as nearly 3-fold higher receptor affinity compared to native ${\alpha}$-factor.

Production and Purification of Single Chain Human Insulin Precursors with Various Fusion Peptides

  • Cho, Chung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • For the production and purification of a single chain human insulin precursor, four types of fusion peptides $\beta$-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)(sub)6-tagged sequence (HTS) were investigated. Recombinant E. coli harboring hybrid genes was cultivated at 37$\^{C}$ for 1h, and gene induction occurred when 0.2mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except for E. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0mM IPTG, followed by a longer than 4h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique.

  • PDF

Viualization of Progesterone Binding to Plasma Membrane of Xenopus Oocytes

  • Ju, Jung-Won;Im, Wook-Bin;Kwon, Hyuk-Bang;Choi, Hueng-Sik
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • We have previously shown that oocyte maturation is induced by an immobilized progesterone, progesterone-3-carboxymethyloxime - bovine serum albumin conjugate (P-BSA) in Rana dybowskii. In this study, we confirmed the maturation inducing activity of P-BSA on Xenopus oocyte and examined the binding character of the immobilized progesterone on the surface of Xenopus oocytes after removal of the vitelline layer. P-BSA induced maturation of Xenopus oocytes but E-BSA failed to do so as observed in Rana. Binding of the immobilized progesterone, fluorescein isothiocyanate-labeled progesterone-3-0-carboxymethyloxime-BSA (P-BSA-FITC) on the devitellined oocytes surface was examined by fluorescence confocal microscopy. The binding affinity of P-BSA-FITC to the devitellined oocyte was higher than that of estrogen-BSA-FITC (E-BSA-FITC) or testosterone-BSA-FITC (T-BSA-FITC). The binding disappeared in the presence of excess free progesterone but not in the presence of free estrogen. Maximum binding occurred after two-hours of incubation with P-BSA-FITC at pH 7.5. Stronger binding occurred in oocytes at stage Vl than stage IV, and in vitro treatment of hCG enhanced the binding. Taken together, these results suggest that a specific receptor for progesterone exists on the plasma membrane of Xenopus oocytes and that progesterone acts initially on this putative receptors and triggers generation of membrane-mediated second messengers during the early stage of oocyte maturation In amphibians.

  • PDF

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Effects of Azumolene on Ryanodine Binging to Sarcoplasmic Reticulum of Normal and Malignant Hyperthermia Sucseptible Swine Skeletal Muscles

  • Kim, Do-Han;Lee, Young-Sup
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.77-80
    • /
    • 1997
  • DOantrolene is a primary specific therapeutic drug for prevention and treatment of malignant hyperthermia symptoms. The mechanisms underlying the therapeutic effects of the drug are not well understood. The present study aimed at the characterization of the effects of azumolene, a water soluble dantrolene analogue, on ryanodine binding to sarcoplasmic reticulum (SR) from normal and malign::lnt hyperthermia susceptible (MHS) swine muscles. Characteristics of $[^3H]ryanodine$ binding were clearly different between the two types of SR. Kinetic analysis of eH]ryanodine binding to SR in the presence of $2{\mu}M$ $Ca^{2+}$ showed that association constant $(K_{ryanodine}_7$ is significantly higher in MHS than normal muscle SR $(2.83 vs. 1.32{\times}10^7 M^{-1}$, whereas the maximal ryanodine binding capacity $(B_{max})$ is similar between the two types of SR. Addition of azumolene $(e.g. 400{\mu}M)$ did not significantly alter both $K_{ryanodine}$ and $B_{max}$ of $[^3H]$ryanodine binding in both types of SR, indicating that the azumolene effect was not on the ryanodine binding sites. Addition of caffeine activated $[^3H]$ ryanodine binding in both types of SR, and caffeine sensitivity was significantly higher in MHS muscle SR than normal muscle SR $(K_{caffeine}:3.24 vs. 0.82 {\times} 10^2 M^{-l}). Addition of azumolene $(e.g.400{\mu}M)$ decreased Kcaffeine without significant change in $B_{max}$ in both types of SR suggesting that azumolene competes with caffeine binding site(s). These results suggest that malignant hyperthermia symptoms are caused at least in part by greater sensitivity of the MHS muscle SR to the $Ca^{2+}$ release drug(s), and that azumolene can reverse the symptoms by reducing the drug affinity to $Ca^{2+}$ release channels.

  • PDF