DOI QR코드

DOI QR Code

Two Kinesins from Arabidopsis, KatB and KatC, Have a Second Microtubule-binding Site in the Tail Domain

  • Jiang, Shiling (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Li, Ming (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Xu, Tao (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Ren, Dongtao (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Liu, Guoqin (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University)
  • Published : 2007.01.31

Abstract

Kinesins, as a kind of microtubule-based motor proteins, have a conserved microtubule-binding site in their motor domain. Here we report that two homologous kinesins in Arabidopsis thaliana, KatB and KatC, contain a second microtubule-binding site in their tail domains. The prokaryotic-expressed N-terminal tail domain of the KatC heavy chain can bind to microtubules in an ATP-insensitive manner. To identify the precise region responsible for the binding, a serious of truncated KatC cDNAs encoding KatC N-terminal regions in different lengths, KatC1-128, KatC1-86, KatC1-73 and KatC1-63, fused to Histidine-tags, were expressed in E. coli and affinity-purified. Microtubule cosedimentation assays show that the site at amino acid residues 74-86 in KatC is important for microtubule-binding. By similarity, we obtained three different lengths of KatB N-terminal regions, KatB1-384, KatB1-77, and KatB1-63, and analyzed their microtubule-binding ability. Cosedimentation assays indicate that the KatB tail domain can also bind to microtubules at the same site as and in a similar manner to KatC. Fluorescence microscopic observations show that the microtubule-binding site at the tail domain of KatB or KatC can induce microtubules bundling only when the stalk domain is present. Through pull-down assays, we show that KatB1-385 and KatC1-394 are able to interact specifically with themselves and with each other in vitro. These findings are significant for identifying a previously uncharacterized microtubule-binding site in the two kinesin proteins, KatB and KatC, and the functional relations between them.

Keywords

References

  1. Ambrose, J. C., li, W. X., Marcus, A., Ma, H. and Cyr, R. (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell. 16, 1584-1592. https://doi.org/10.1091/mbc.E04-10-0935
  2. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. and Vale, R. D. (1997) The directional preference of fkinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959-966. https://doi.org/10.1016/S0092-8674(00)80360-8
  3. Chen, C., Marcus, A., Li, W., Hu, Y., Calzada, J. P., Grossniklaus, U., Cyr, R. J. and Ma, H. (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129, 2401-2409.
  4. Endow, S. A. and Waligora, K. W. (1998) Determinatants of kinesin motor polarity. Science 281, 1200-1202. https://doi.org/10.1126/science.281.5380.1200
  5. Goode, B. L., Denis, P. E., Panda, D., Radeke, M. J., Miller, H. P., Wilson, L. and Feinstein S. C. (1997) Fuctional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cell. 8, 353-365. https://doi.org/10.1091/mbc.8.2.353
  6. Heald, R. (2000) Motor function in the mitotic spindle. Cell 102, 399-402. https://doi.org/10.1016/S0092-8674(00)00044-1
  7. Hirokawa, N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. https://doi.org/10.1126/science.279.5350.519
  8. Karabay, A. and Walker, R. A. (1999) Identification of microtubule binding sites in the NCD tail domain. Biochemistry 38, 1838-1849. https://doi.org/10.1021/bi981850i
  9. Kashina, A. S., Rogers, G. C. and Scholey, J. M. (1997) The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. Biochi. Biophys. Acta. 1357, 257-271. https://doi.org/10.1016/S0167-4889(97)00037-2
  10. Kline-Smith, S. L. and Walczak, C. E. (2002) The microtubuledestabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol. Biol. Cell. 13, 2718-2731. https://doi.org/10.1091/mbc.E01-12-0143
  11. Kuznetsov, S. A., Vaisberg, E. A., Shanina, N. A., Magretova, N. N., Chernyak, V. Y. and Gelfan, V. I. (1988) The quaternary structure of bovine brain kinesin. EMBO J. 7, 353-356.
  12. Lawrence, C. J., Dawe, R. K., Christie, K. R., Cleveland, D. W., Dawson, S. C., Endow, S. A., Goldstein, L. S., Goodson, H. V., Hirokawa, N., Howars, J., Malmerg, R. L., Mclntosh, J. R., Miki, H., Mitchison, T. J., Okada., Y., Reddy, A. S., Saxton, W. M., Schliwa, M., Scholey, J. M., Vale, R. D., Walczak, C. E. and Wordeman L. (2004) A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22. https://doi.org/10.1083/jcb.200408113
  13. Lewis, S. A., Wang, D. H. and Cowan, N. J. (1988) Microtubuleassociated protein MAP2 shares a microtubule binding motif with tau protein. Science 242, 936-939. https://doi.org/10.1126/science.3142041
  14. Liu, B., Cyr, R. J. and Palevitz, B. A. (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8, 119-132. https://doi.org/10.1105/tpc.8.1.119
  15. Mackey, A. T., Sproul, L. R., Sontag, C. A., Satterwhite, L. L., Correia, J. J. and Gilbert, S. P. (2004) Mechanistic analysis of the saccharomyces cerevisiae kinesin Kar3. J. Biol. Chem. 279, 51354-51361. https://doi.org/10.1074/jbc.M406268200
  16. Marcus, A. L., Li, W., Ma, H. and Cyr, R. J. (2003) A kinesin mutant with an atypical bipolar spindle undergos normal mitosis. Mol. Biol. Cell. 14, 1717-1726. https://doi.org/10.1091/mbc.E02-09-0586
  17. Meluh, P. B. and Rose, M. D. (1990) KAR3, a kinesin-related gene required for nuclear function. Cell 60, 1029-1041. https://doi.org/10.1016/0092-8674(90)90351-E
  18. Mitsui, H., Nakatani, K., Yamaguchi-shinozaki, K., Shinozaki, K., Nishikawa, K. and Takahashi, H. (1994) Sequncing and characterization of the kinesin-related genes katB and katC of Arabidopsis thaliana. Plant Mol. Biol. 25, 865-876. https://doi.org/10.1007/BF00028881
  19. Mitsui, H., Hasezawa, S., Nagata, T. and Takahashi, H. (1996) Cell cycledependent accumulation of a kinesin-like protein, KatB/C, in synchronized tobacco BY-2 cells. Plant Mol. Biol. 30, 177-181. https://doi.org/10.1007/BF00017812
  20. Mitsui, H., Yamaguchi-Shinozaki, K., Shinozaki, K., Nishikawa, K. and Takahashi, H. (1993) Identification of a gene family (Kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol. Gen. Genet. 238, 362-368. https://doi.org/10.1007/BF00291995
  21. Narasimhulu, S. B. and Reddy, A. S. (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell 10, 957-965. https://doi.org/10.1105/tpc.10.6.957
  22. Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H., Asada, T., Irie, K., Ito, M., Terada, M., Banno, H., Yamazaki, Y. and Machida, Y. (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87-99. https://doi.org/10.1016/S0092-8674(02)00691-8
  23. Pan, R. Q., Lee, Y. R. and Liu, B. (2004) Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. Planta 220, 156-164. https://doi.org/10.1007/s00425-004-1324-4
  24. Reddy, A. S. and Day, I. S. (2001) Kinesin in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2, 2. https://doi.org/10.1186/1471-2164-2-2
  25. Robley, C., Williams, J. R. and Lee, J. C. (1987) Preparation of tubulin from brain. Methods in enzymology 85, 376-385.
  26. Sharp, D. J., Brown, H. M., Kwon, M. J., Rogers, G. C., Holland, G. and Scholey, J. M. (2000) Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell. 11, 241-253. https://doi.org/10.1091/mbc.11.1.241
  27. Sharp, D. J., Mcdonald, K. L., Brown, H. M., Matthies, H. J., Walczak, C., Mitchison, T. J. and Scholey, J. M. (1999) The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol. 144, 125-138. https://doi.org/10.1083/jcb.144.1.125
  28. Seiler, S., Kirchner, J., Horn, C., Kallipolitou, A., Woehlke, G. and Schliwa, M. (2000) Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat. Cell Biol. 2, 333-338. https://doi.org/10.1038/35014022
  29. Shiroguchi, K., Ohsugi, M., Edamatsu, M. and Yamamoto, T. (2003) The second microtubule-binding site of monomeric kid enhances the microtubule affinity. J. Biol. Chem. 278, 22460-22465. https://doi.org/10.1074/jbc.M212274200
  30. Straube, A., Hause, G., Fink, G. and Steinberg, G. (2006) Conventional kinesin mediates microtubule-microtubule interactions in vivo. Mol. Biol. Cell. 17, 907-916. https://doi.org/10.1091/mbc.E05-06-0542

Cited by

  1. Characterization of a novel rice kinesin O12 with a calponin homology domain vol.149, pp.1, 2011, https://doi.org/10.1093/jb/mvq122
  2. The crystal structure and biochemical characterization of Kif15: a bifunctional molecular motor involved in bipolar spindle formation and neuronal development vol.70, pp.1, 2014, https://doi.org/10.1107/S1399004713028721
  3. Functional divergence of the duplicated AtKIN14a and AtKIN14b genes: critical roles in Arabidopsis meiosis and gametophyte development vol.53, pp.6, 2007, https://doi.org/10.1111/j.1365-313X.2007.03391.x