• Title/Summary/Keyword: affine transformation

Search Result 127, Processing Time 0.028 seconds

Block Based Blind & Secure Gray Image Watermarking Technique Based on Discrete Wavelet Transform and Singular Value Decomposition

  • Imran, Muhammad;Harvey, Bruce A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.883-900
    • /
    • 2017
  • In this paper block based blind secure gray image watermarking scheme based on discrete wavelet transform and singular value decomposition is proposed. In devising the proposed scheme, security is given high importance along with other two requirements: robustness and imperceptibility. The use of discrete wavelet transform not only improves robustness but the selection of bands with high tolerance towards noise caused an improvement in terms of imperceptibility. The robustness further improved due to the involvement of singular vectors along with singular values in watermark embedding and extraction process. Finally, to achieve security, the selected DWT band is decomposed into smaller blocks and random blocks are chosen for modification. Furthermore, the elements of left and right singular vectors of selected blocks are chosen based on their dependence upon each other for watermark embedding. Various experiments using different images as host and watermark were conducted to examine and validate the proposed technique. Additionally, the proposed technique is tested against various attacks like compression, affine transformation, cropping, translation, X shearing, scaling, Y shearing, filtering, blurring, different kinds of noises, histogram equalization, rotation, etc. Lastly, the proposed technique is compared with state-of-the-art watermarking techniques and their comparison shows significant improvement of proposed scheme over existing techniques.

An algorithm for the image improvement in the multi-view images coding (Multi-view 영상 코딩에서 영상 개선 알고리듬)

  • 김도현;최동준;양영일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.53-61
    • /
    • 1998
  • In this paper, we propose an efficient multi-view images coding algorithm to find the optimal depth and texture from the set of multi-view images. The proposed algorithm consists of two consecutive steps, i) the depth estraction step, and ii) the texture extraction step, comparedwith the traditional algorithem which finds the depth and texture concurrently. The X-Y plane of the normalized object space is divided into traingular paatches and the Z value of the node is determined in the first step and then the texture of the each patch is extracted in the second step. In the depth extraction step, the depth of the node is determined by applying the block based disparity compensation method to the windowed area centered at the node. In the second step, the texture of the traingular patches is extracted from the multi-view images by applying the affine transformation based disparity compensation method to the traingular pateches with the depth extracted from the first step. Experimental results show that the SNR(Singnal-to- Noise Ratio) of images enconded by our algorithm is better than that of images encoded by the traditional algorithm by the amount about 4dB for for the test sets of multi-view images called dragon, kid, city and santa.

  • PDF

A Study on the Enhancement of Image Distortion for the Hybrid Fractal System with SOFM Vector Quantizer (SOFM 벡터 양자화기와 프랙탈 혼합 시스템의 영상 왜곡특성 향상에 관한 연구)

  • 김영정;김상희;박원우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • Fractal image compression can reduce the size of image data by the contractive mapping that is affine transformation to find the block(called as range block) which is the most similar to the original image. Even though fractal image compression is regarded as an efficient way to reduce the data size, it has high distortion rate and requires long encoding time. In this paper, we presented a hybrid fractal image compression system with the modified SOFM Vector Quantizer which uses improved competitive learning method. The simulation results showed that the VQ hybrid fractal using improved competitive loaming SOFM has better distortion rate than the VQ hybrid fractal using normal SOFM.

  • PDF

3D Mesh Model Watermarking Based on POCS (POCS에 기반한 3D 메쉬 모델 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong;Lee Kuhn-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1592-1599
    • /
    • 2004
  • In this paper, we proposed the 3D mesh watermarking using projection onto convex sets (POCS). 3D mesh is projected iteratively onto two constraint convex sets until it satisfy the convergence condition. These sets consist of the robustness set and the invisibility set that designed to embed watermark Watermark is extracted without original mesh by using the decision values and the index that watermark is embedded. Experimental results verified that the watermarked mesh have the robustness against mesh simplification, cropping, affine transformation, and vertex randomization as well as the invisibility.

Drift Handling in Object Tracking by Sparse Representations (희소성 표현 기반 객체 추적에서의 표류 처리)

  • Yeo, JungYeon;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.88-94
    • /
    • 2016
  • In this paper, we proposed a new object tracking algorithm based on sparse representation to handle the drifting problem. In APG-L1(accelerated proximal gradient) tracking, the sparse representation is applied to model the appearance of object using linear combination of target templates and trivial templates with proper coefficients. Also, the particle filter based on affine transformation matrix is applied to find the location of object and APG method is used to minimize the l1-norm of sparse representation. In this paper, we make use of the trivial template coefficients actively to block the drifting problem. We experiment the various videos with diverse challenges and the result shows better performance than others.

Experimental Design of S box and G function strong with attacks in SEED-type cipher (SEED 형식 암호에서 공격에 강한 S 박스와 G 함수의 실험적 설계)

  • 박창수;송홍복;조경연
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.123-136
    • /
    • 2004
  • In this paper, complexity and regularity of polynomial multiplication over $GF({2^n})$ are defined by using Hamming weight of rows and columns of the matrix ever GF(2) which represents polynomial multiplication. It is shown experimentally that in order to construct the block cipher robust against differential cryptanalysis, polynomial multiplication of substitution layer and the permutation layer should have high complexity and high regularity. With result of the experiment, a way of constituting S box and G function is suggested in the block cipher whose structure is similar to SEED, which is KOREA standard of 128-bit block cipher. S box can be formed with a nonlinear function and an affine transform. Nonlinear function must be strong with differential attack and linear attack, and it consists of an inverse number over $GF({2^8})$ which has neither a fixed pout, whose input and output are the same except 0 and 1, nor an opposite fixed number, whose output is one`s complement of the input. Affine transform can be constituted so that the input/output correlation can be the lowest and there can be no fixed point or opposite fixed point. G function undergoes linear transform with 4 S-box outputs using the matrix of 4${\times}$4 over $GF({2^8})$. The components in the matrix of linear transformation have high complexity and high regularity. Furthermore, G function can be constituted so that MDS(Maximum Distance Separable) code can be formed, SAC(Strict Avalanche Criterion) can be met, and there can be no weak input where a fixed point an opposite fixed point, and output can be two`s complement of input. The primitive polynomials of nonlinear function affine transform and linear transformation are different each other. The S box and G function suggested in this paper can be used as a constituent of the block cipher with high security, in that they are strong with differential attack and linear attack with no weak input and they are excellent at diffusion.

Image Registration for PET/CT and CT Images with Particle Swarm Optimization (Particle Swarm Optimization을 이용한 PET/CT와 CT영상의 정합)

  • Lee, Hak-Jae;Kim, Yong-Kwon;Lee, Ki-Sung;Moon, Guk-Hyun;Joo, Sung-Kwan;Kim, Kyeong-Min;Cheon, Gi-Jeong;Choi, Jong-Hak;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.195-203
    • /
    • 2009
  • Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  • PDF

Gaze Detection by Computing Facial and Eye Movement (얼굴 및 눈동자 움직임에 의한 시선 위치 추적)

  • 박강령
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.79-88
    • /
    • 2004
  • Gaze detection is to locate the position on a monitor screen where a user is looking by computer vision. Gaze detection systems have numerous fields of application. They are applicable to the man-machine interface for helping the handicapped to use computers and the view control in three dimensional simulation programs. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.8 cm of RMS error.

An Image Coding Algorithm for the Representation of the Set of the Zoom Images (Zoom 영상 표현을 위한 영상 코딩 알고리듬)

  • Jang, Bo-Hyeon;Kim, Do-Hyeon;Yang, Yeong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.498-508
    • /
    • 2001
  • In this paper, we propose an efficient coding algorithm for the zoom images to find the optimal depth and texture information. The proposed algorithm is the area-based method consisting of two consecutive steps, i) the depth extraction step and ii) the texture extraction step. The X-Y plane of the object space is divided into triangular patches and the depth value of the node is determined in the first step and then the texture of the each patch is extracted in the second step. In the depth extraction step, the depth of the node is determined by applying the block-based disparity compensation method to the windowed area centered at the node. In the second step, the texture of the triangular patches is extracted from the zoom images by applying the affine transformation based disparity compensation method to the triangular patches with the depth value extracted from the first step. To improve the quality of image, the interpolation is peformed on the object space instead of the interpolation on the image plane.

  • PDF

Automatic Detection of the Updating Object by Areal Feature Matching Based on Shape Similarity (형상유사도 기반의 면 객체 매칭을 통한 갱신 객체 탐지)

  • Kim, Ji-Young;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • In this paper, we proposed a method for automatic detection of a updating object from spatial data sets of different scale and updating cycle by using areal feature matching based on shape similarity. For this, we defined a updating object by analysing matching relationships between two different spatial data sets. Next, we firstly eliminated systematic errors in different scale by using affine transformation. Secondly, if any object is overlaid with several areal features of other data sets, we changed several areal features into a single areal feature. Finally, we detected the updating objects by applying areal feature matching based on shape similarity into the changed spatial data sets. After applying the proposed method into digital topographic map and a base map of Korean Address Information System in South Korea, we confirmed that F-measure is highly 0.958 in a statistical evaluation and that significant updating objects are detected from a visual evaluation.